
DRQN-based 3D Obstacle Avoidance with a Limited Field of View

Yu’an Chen, Guangda Chen, Lifan Pan, Jun Ma, Yu Zhang, Yanyong Zhang, and Jianmin Ji∗

Abstract— In this paper, we propose a map-based end-to-end
DRL approach for three-dimensional (3D) obstacle avoidance
in a partially observed environment, which is applied to achieve
autonomous navigation for an indoor mobile robot using a
depth camera with a narrow field of view. We first train a
neural network with LSTM units in a 3D simulator of mobile
robots to approximate the Q-value function in double DRQN.
We also use a curriculum learning strategy to accelerate and
stabilize the training process. Then we deploy the trained
model to a real robot to perform 3D obstacle avoidance in
its navigation. We evaluate the proposed approach both in
the simulated environment and on a robot in the real world.
The experimental results show that the approach is efficient
and easy to be deployed, and it performs well for 3D obstacle
avoidance with a narrow observation angle, which outperforms
other existing DRL-based models by 15.5% on success rate.

I. INTRODUCTION

Autonomous mobile robots have become increasingly pop-
ular in recent years, which are capable to provide services
like delivery, cleaning, guidance, and so on. Safe navigation
in complex and crowded environments is essential for these
applications. In this paper, we consider the navigation prob-
lem for indoor robots. Within this well-researched domain,
mainstream approaches consist of a global planner and a
local planner. The global planner creates a trajectory or
waypoints using a pre-built map of the environment. Then,
the local planner follows the global path while avoiding
collisions with static obstacles but also unexpected dynamic
obstacles, which is one of the well-known challenges in robot
navigation.

Most indoor mobile robots have been developed consider-
ing a two-dimensional (2D) planar environment, that relies
on 2D range finders to provide 2D maps of the obstacles
that can be obtained in a plane horizontal to the ground.
However, such 2D maps may lose 3D coordinate information
of obstacles, like table corners, low steps, feet, etc., which
affect the safety of navigation in office-like environments.

Recently, obstacle avoidance in a 3D dynamic environment
with partial observation has received considerable attention.
Marder-Eppstein et al. [1] used a couple of 3D laser range
finders to accomplish safe navigation in a complex office
environment. Wang et al. [2] employed an RGB-D camera

The work is partially supported by the National Key Research and Devel-
opment Program of China (No. 2018AAA0100500), CAAI-Huawei Mind-
Spore Open Fund, Anhui Provincial Development and Reform Commission
2020 New Energy Vehicle Industry Innovation Development Project ”Key
System Research and Vehicle Development for Mass Production Oriented
Highly Autonomous Driving”, and Key-Area Research and Development
Program of Guangdong Province 2020B0909050001.

School of Computer Science and Technology, University of Science and
Technology of China, Hefei, 230026, China

∗ Corresponding authors. {jianmin}@ustc.edu.cn

and a 2D laser to make their robot moving autonomously in
an uneven and unstructured indoor environment. Most exist-
ing algorithms for 3D obstacle avoidance are extended from
2D methods like Dynamic Window Approach (DWA) [3]
and elastic bands [4]. These extensions aggravate their weak-
nesses of intensive computational demand and limited gen-
eralization to unseen environments, since they are sample-
based and involve numerous parameters that need to be tuned
manually.

To overcome these weaknesses, deep reinforcement learn-
ing (DRL) based control approaches were proposed [5]–
[10]. These approaches learn neural networks that directly
map sensor inputs to the velocities of the robot by interact-
ing with the environment. Although DRL approaches have
shown promising results in robot navigation, few works have
been done for 3D obstacle avoidance without the use of
expensive 3D LiDAR scanners.

In this paper, we propose an end-to-end DRL algorithm
for 3D obstacle avoidance in partially observed office-like
environments using a Kinect v1 depth sensor (RGB-D cam-
era).

Note that, this RGB-D camera provides depth information
of the environment. Then we can convert the information
into a costmap and apply a map-based DRL approach for
3D obstacle avoidance, which helps us to avoid multiple
tough challenges common in visual navigation [8]. However,
the main limitation of RGB-D cameras is their narrow Field
of View (FOV). Here, Kinect v1 has a horizontal FOV of
57-degree and a vertical FOV of 43-degree. To handle the
limited FOV of the depth camera, we use double Deep
Recurrent Q-Learning (DRQN) [11] to infer the drivable
area from consecutive probabilistic occupancy grid maps
(costmaps) generated from sensor data. We also use a
curriculum learning strategy to accelerate and stabilize the
training process. We consider local costmaps as inputs of the
trained network. Then it is easier to deploy the trained model
to a real robot to perform 3D obstacle avoidance in the real
world. We demonstrate and evaluate the approach in both
simulation and real-world experiments. The experimental
results show that our approach is efficient and easy to be
deployed, and it performs well for 3D obstacle avoidance
with a narrow observation angle, which outperforms other
existing DRL-based models in numerous indicators.

The main contributions of our work are the followings:
• We propose an end-to-end DRL method for 3D obstacle

avoidance in partially observed environments.
• We verify the feasibility of using a depth camera with

a narrow FOV for 3D obstacle avoidance by DRL.
• We show that the trained model is easy to be deployed

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 8137

20
21

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

11
68

.2
02

1.
96

35
94

9

to a real robot by considering local costmaps as inputs
of the neural network.

II. RELATED WORK

Traditional robot navigation approaches [3], [4], [12] nor-
mally depend on several human-engineered hyperparameters
and rules that are not likely to be satisfied in practice. Then
these approaches might fail in some cases due to the obvious
sensitivity of these hyperparameters and rules.

To overcome the limitation, DRL-based approaches are
widely studied. In DRL, the robot interacts with the envi-
ronment and learns from numerous trials with corresponding
rewards instead of labeled data to map sensor inputs directly
to its velocities. Based on the differences in input data,
existing DRL-based navigation approaches can be roughly
divided into two categories: methods with agent-level inputs
and methods with sensor-level inputs. In specific, methods
with agent-level inputs require expensive motion data of
other robots, like velocities, accelerations, and paths, for
the states of the DRL model and methods with sensor-level
inputs consider sensor inputs as the states of the DRL model.

As a representative of methods with agent-level inputs,
Chen et al. [5] trained an agent-level collision avoidance
policy using DRL, which maps an agent’s state and its neigh-
bors’ states to collision-free action. However, it demands
perfect sensing, which makes the whole system less robust
to noise and difficult to be deployed to a real robot.

For methods with sensor-level inputs, various types of sen-
sor data are considered in DRL-based navigation, including
2D Lidar sensor data [6], [7], [13], color images [8], depth
images [14], and 3D point clouds [10]. In specific, Fan et
al. [7] proposed a convolutional neural network (CNN) with
the last three consecutive frames of laser range as inputs
and control commands as outputs. Similarly, Long et al. [6]
and Chen et al. [13] directly derive the control commands
from laser range sensors through neural networks. These
approaches have been deployed to real robots. However,
expensive LiDAR scanners are required to provide a wide
FOV (180° in [6], [7], [13]) sensing.

DRL-based navigation with a 2D laser can be easily
deployed to a real robot, as the difference between sensing
data of a simulated 2D laser and a real one is limited.
However, 2D sensing data is not enough to describe complex
3D scenarios. On the contrary, vision sensors can provide 3D
sensing information. Zhu et al. [8] proposed a DRL frame-
work for target-driven visual navigation using color images.
And Zhang et al. [14] proposed a successor-feature-based
DRL algorithm that can quickly adapt to new navigation
tasks with inputs of depth images. However, for both RGB
and RGB-D images there are large differences between the
images generated in simulated environments and the ones
generated in the real-world, which makes it difficult to make
full use of the simulator and deploy the trained model from
a simulator to a real robot. On the other hand, an RGB-D
camera can also be considered as a depth camera, which
provides 3D point clouds of the environment. Compared to
vision inputs, DRL-based navigation with 3D point clouds is

easier to be deployed to a real robot. However, the FOV of
a depth camera is usually narrow, which severely degrades
the performance of DRL methods. To overcome the problem,
Choi et al. [10] proposed an LSTM based model with Local-
Map Critic (LSTM-LMC) for DRL-based navigation with
3D point clouds generated by a depth camera. However,
the depth camera in this paper is much narrower than
theirs, which greatly increases the difficulty of the navigation
problem. Lobos-Tsunekawa et al. [15] used Simultaneous
Localization and Mapping (SLAM) to directly integrate the
information of the environment from previous time steps.
Note that, their navigation policy only needs to choose
an action from three discrete actions, which limits their
applications in various robots in the real world.

The approach in this paper stems from our previous work
[13] and extends 2D obstacle avoidance to 3D obstacle
avoidance. As same as the previous work, local costmaps
are considered as inputs of the neural network, which helps
us to extend the sensing data from a 2D laser scanner to a
depth camera. The main differences are the perception sensor
used and the corresponding improvements to the network
structure. Inspired by the approach in [10], we replace the
expensive laser range finder with an affordable depth camera
(Kinect v1) to implement obstacle avoidance in the method
of DRL. In contrast to their work, only sensor-level input data
are needed to generate our local costmaps while agent-level
inputs such as types and speeds of obstacles are not required,
which reduces the computational load of the network and
makes it easier to deploy the trained model to a real robot.
Notice that, the FOV of our depth camera is narrower
than the camera used in [10] . In this paper, we focus on
applying DRL-based navigation for 3D obstacle avoidance
in a partially observed indoor environment for a real robot
with only a Kinect sensor.

III. PROBLEM FORMULATION

The obstacle avoidance problem considered here be for-
mulated as a sequential decision-making problem with partial
observation, due to the limited FOV of the depth camera.

At each time step t, the robot receives a partial obser-
vation ot and computes a collision-free control command
that navigates it to move from the starting position p0 to
the goal position pg . The observation ot drawn from the
probability distribution w.r.t. the underlying system state st,
i.e., ot ∼ O (st), only provides partial information about the
state st. The observation of each time step can be divided
into three parts:

ot = [Mt, o
g
t , o

v
t] ,

where Mt is a local costmap contains information of raw
depth point cloud measurements about its ahead environ-
ment, ogt stands for its relative goal position, and ovt refers to
its current velocity. According to the observation ot, the robot
computes an action, at, sampled from a stochastic policy π
learned from past experiences:

at ∼ πθ (at|ot) ,

8138

where θ indicates the parameters of the policy. The computed
action at consists of the directed linear velocity vt and
angular velocity ωt for the robot. A sequence of actions
〈a0, a1, . . . , atg 〉 can be considered as a trajectory that
navigates the robot to move from its starting position p0
to its goal position pg , where tg is the last time step of
the sequence. Our goal is to find the optimal policy that
minimizes the expectation of the mean arrival time while
avoiding all obstacles, which is defined as:

argmin
πθ

E [tg|vt = πθ (at|ot) ,

pt = pt−1 + vt ·∆t,
∀k ∈ [1, N] : ‖pt − (pobs)k‖ > R] ,

where pobs is the position of obstacles, R is the robot radius.

IV. APPROACH

A. Environment Representation

An accurate and compact representation of the environ-
ment is crucial for a navigation system as it captures all
information needed for the navigation component to general
collision-free and optimal motions for the robot.

1) Point Cloud Filter Pipeline: The original 3D point
cloud contains outliers and redundant information. In the
point cloud filter pipeline, we first down-sample the point
cloud, then remove outliers and refine the result by eliminat-
ing the ceiling.

Firstly, we perform a down-sampling procedure to reduce
the resolution and the computational costs of the point cloud.
In specific, we convert the point cloud to 3D voxel grids with
the side length of 5cm and use centers of all voxels to down-
sample the point cloud.

Secondly, we apply a statistical filter to remove outliers
to reduce the noise in the point cloud. The sparse outlier
filter is based on the computation of the distribution of
point to neighbor distances in the input dataset. For each
point, we compute the mean distance from it to all its
50 neighbors. By assuming that the resulted distribution is
Gaussian with a mean and a standard deviation, all points
whose mean distances are outside an interval defined by
the global distances mean and standard deviation can be
considered as outliers and trimmed from the dataset.

Lastly, we refine the result and refrain from regarding the
floor and ceiling as obstacles. In specific, we remove all
points that are higher than the height of our robot (1.35 m).

After being processed by the point cloud filter pipeline,
the remaining points in the cloud would be further utilized
to construct the costmap.

2) Costmap Generator: We use layered costmaps [16] to
represent the environment perceived by multiple sensors. In
this paper, as long as the robot is moving on flat ground, we
can transform the processed 3D point cloud into the bird’s-
eye view 2D costmap.

In specific, we initialize the costmap with unknown values
and update it when a new sensor reading is received, which
makes the costmap maintain an up-to-date view of the robot’s
local environment. Although the costmap is a 2D structure,

(a) (b)

Fig. 1. (a) A Gazebo training environment and (b) the corresponding local
costmap displayed in Rviz.

it still can efficiently specify the compressed 3D information
of the point cloud. Note that, the processed points could be
divided into vertical columns. Then the costmap generator
can project these columns into corresponding values for grids
of the costmap. The points lower than 5 cm will be regarded
as free space and other points are considered as obstacles.

We can also add the robot configuration (shape) into
the costmap, by which the neural network can recognize
the colliding situations, i.e., the overlap situations of the
robot configuration and objects in the costmap. Moreover,
we convert the costmap to a corresponding image to ease the
setup of the network. Without loss of generality, we identity a
costmap with its corresponding image in the paper. Fig. 1(b)
shows an example of the generated costmap that covers a 6
m×6 m area around the robot with a resolution of 10 cm.

B. Double DRQN

The partially observable sequential decision-making prob-
lem defined in Section III can be considered as a Par-
tially Observable Markov Decision Process (POMDP) prob-
lem [17], which can be solved using reinforcement learn-
ing. In specific, a POMDP problem consists of 6 tuples
〈S,A, P,R,Ω, O〉, where S is the state space, A is the
action space, P is the transition probability function, R is
the reward function, Ω is observation space with o ∈ Ω, and
O is observation probability function.

The objective of reinforcement learning [18] is to learn
the policy of the agent, πθ(a, o) = p(a | o), that maximizes
the discounted return

G =

∞∑
t=0

γtE [r (st, at)] ,

where γ ∈ [0, 1] is the discount factor for future rewards.
In our previous work [13], Deep Q-Learning Network

(DQN) [19] is used for 2D obstacle avoidance. In DQN,
the superiority of a policy π is evaluated by the Q-value
(action-value) function as:

Qπ(s, a) = Eπ
[∞∑
t=0

γtR (st, at) | s0 = s, a0 = a

]
.

However, DQN assumes full observation of the environ-
ment, which has no explicit mechanisms to decipher hidden
states from observations in POMDP. Then, using DQN to

8139

Fig. 2. The architecture of our double DRQN network. This network takes three consecutive frames of local costmaps, the goal position and the robot’s
velocity as inputs, and outputs extended Q-values for 28 different actions.

estimate a Q-value from observations would go wrong, i.e.,
generally Q (o, a | θ) 6= Q (s, a | θ).

To handle these POMDP problems, Hausknecht et
al. [11] introduced Deep Recurrent Q-Networks (DRQN).
In DRQN, the Q-value Q (st, at) is no longer considered,
but Q (ot, ht−1, at) is used, where ht is an extra input
generated by the network at each time step t, which reflects
the agent’s current belief of hidden states. Recurrent neural
network units like LSTM [20] can be placed in a DQN
network for such a purpose, where ht = LSTM(ht−1, ot)
and the extended Q-value Q (ot, ht−1, at) is estimated by
the network.

Some tricks that are effective for DQN can also be used
to improve the performance of DRQN. In specific, inspired
by Double Q-learning [21], we use a double network for the
extended Q-value function to eliminate the overestimation
bias. We also apply Dueling networks [22] for a more
normalized estimation of extended Q-values. We specify the
details of our DRQN-based approach in the following.

1) Observation Space: As mentioned in Section III, the
observation ot consists of the generated costmap Mt, the
relative goal position gt and the robot’s current velocities
vt. In specific, Mt specifies the costmap image generated
from the point cloud data from the depth camera with 57°
FOV. gt is a 2D vector that specifies the goal position in
the corresponding polar coordinates w.r.t. the robot’s current
position. vt specifies the linear and angular velocities of the
robot at time t.

2) Action Space: In this paper, we consider a two-
dimensional action space composing linear velocity and
angular velocity. We discrete the action space into 28 dif-
ferent actions, i.e., 4 values for the linear velocity, v ∈
{0.0, 0.2, 0.4, 0.6}, and 7 values for the angular velocity,
ω ∈ {−0.9, −0.6, −0.3, 0.0, 0.3, 0.6, 0.9}, where an ac-
tion is a pair (v, ω). Note that, v < 0.0 is not allowed, i.e.,
moving backward is not allowed, due to lack of rear sensors.

3) Reward Function: The reward r consists of four terms
as follows :

r = rgoal + rcollision + rsafety + rstep.

In particular, rgoal specifies the penalty when the robot
goes far from its goal. rgoal = 500 when the robot reaches

its goal. We define rgoal as:

rgoal =

{
500 if ‖pt − pg‖ < 0.3,
εg (‖pt−1 − pg‖ − ‖pt − pg‖) otherwise.

where εg is the hyper parameter that controls the penalty
amount. We set εg = 200.
rcollision specifies the penalty when the robot encounters

a collision. We define rcollision as:

rcollision =

{
−500 if the robot encounters a collsion,
0 otherwise.

rsafety specifies the penalty when the robot gets closer to
obstacles. We define rsafety as:

rsafety = εs
(
mindt−1 −mindt

)
,

where mindt denotes the distance between the robot and
the closest obstacle boundary at time t, and εs is the hyper
parameter that controls this penalty amount. We set εs =
−100.

At last, we apply a small negative penalty for each time
step, i.e., rstep = −5, to encourage short paths.

4) Network Architecture: Our network architecture for
double DRQN is specified in Fig. 2. The inputs of the
network consist of three parts, i.e., three consecutive frames
of local costmaps with 60×60 gray pixels, the goal position,
and the robot’s velocity. The values of the goal position and
the robot’s velocity are combined into a four-dimensional
vector.

The network first produces feature maps with 64 channels
for the costmaps using three convolutional layers1. The net-
work also projects the goal position and the robot’s velocity
to vectors with 64 channels. Then the network combines
these feature maps, flattens the combination, and feeds the
result into the LSTM unit. At last, the network applies two
fully connected layers and a dueling network structure to
produce extended Q-values of these 28 discrete actions.

C. Curriculum Learning

Curriculum learning [23] has recently been shown as an
efficient strategy that can help find better local minima and
accelerate the training process. The main idea of curriculum

1More details can be found in [11].

8140

(a) A random scenario (b) An office-like sce-
nario

(c) A coffee-like sce-
nario

Fig. 3. Three testing scenarios used in our simulation experiments, the
starting point is marked by a green dot, the target point is marked by a red
dot, and the robot’s trajectory is marked by purple arrows.

learning is to decompose a hard learning task into several
simple ones, start with the simplest task, and level up the
difficulty gradually.

In this work, we use Gazebo [24] as our 3D simulation
environment to train the robot for obstacle avoidance. In
training mode, the environment will randomly choose loca-
tions for obstacles, the starting and target points of the robot.
An example of such an environment is shown in Fig. 1(a).
In the training process, we gradually increase the number
of obstacles and the distance from the starting position to
the target position to level up the complexity of the obstacle
avoidance problem. We level up the difficulty only when
the robot has achieved a considerable success rate in current
environments.

V. EXPERIMENT

A. Implementation Details

We implemented a simulated differential robot with a
Kinect camera (depth camera with 57-degree horizontal
FOV) in Gazebo, as illustrated in Fig. 1(a). Note that, the
vertical FOV of the Kinect camera is limited to 43 degrees
and the depth range of the Kinect is 0.8 - 4 m. Then Kinect
cannot detect obstacles close to the robot. As illustrated in
Fig. 1(b), we specify the area in the near front of the robot as
an unknown space, which increases the difficulty for obstacle
avoidance.

We trained our DRQN-based agent with the hyperpa-
rameters listed in Table I. The deep recurrent Q-network
is implemented in TensorFlow and trained with the Adam
optimizer [25]. A computer with an i9-9900k CPU and an

TABLE I
HYPER PARAMETERS

Parameter Value

learning rate 1× 10−3

discount factor 0.97
replay buffer size 2× 105

minibatch size 1024
image size 60× 60
episode length 200
initial exploration 1
final exploration 0.1
LSTM unroll 3
LSTM initializer orthogonal

NVIDIA GeForce 2080 Ti GPU is used for the training.
It takes around 20 hours to train the network for good
performance in testing environments.

Besides our curricular DRQN-based approach (denoted
by curricular DRQN), we also implemented other DRL-
based approaches, i.e., curricular 3-frame DQN, the DQN-
based approach introduced in [13] using curriculum learning
and taking three consecutive frames of local costmaps as
inputs, and 3-frame PPO, an improved version of the PPO-
based approach proposed in [6] also taking three consecutive
frames of local costmaps instead of 2D laser data as inputs
and using 2D convolutions instead of 1D convolutions in the
network. Note that, curriculum learning is not applied in the
original version of the PPO-based approach in [6]. We then
implemented an extended version of it by adding curriculum
learning. However, this extended version does not perform
better than the original one. On the other hand, the improved
version that replaces laser data and 1D convolutions with
costmaps and 2D convolutions performs much better.

B. Simulation Experiments

1) Evaluation Metrics: We report four metrics to evalu-
ate the performance of DRL-based approaches for obstacle
avoidance as the following:
• Success Rate (SR): the ratio of the episodes that end

with the robot reaching its target without any collision.
• Expected Return (ER): the average of the sum of

rewards of all episodes.
• Reach Time (RT): the average time for the robot to

successfully reach the target without any collision.
• Average Angular Velocity Change (AAVC): the aver-

age absolute value of the difference of angular velocities
between two consecutive time steps, by which we can
evaluate the smoothness of the trajectory.

2) Training and Testing Scenarios: As illustrated in
Fig. 3(a), we train the robot for obstacle avoidance in random
scenarios of the simulation environment. As mentioned in
Section IV-C, we trained the two curricular approaches in
the same training procedure.

Besides random scenarios, we also construct two new
testing scenarios to evaluate the performance of trained
models for unseen scenarios, i.e., office-like scenarios and
coffee-like scenarios as illustrated in Fig. 3(b) and Fig. 3(c).
In specific, an office-like scenario would require the robot
to pass through the narrow passage between two desks and
a coffee-like scenario would be filled with round chairs and
round tables with one foot, where 3D obstacle avoidance is
required. Note that, both office-like and coffee-like scenarios
are challenging for most 2D obstacle avoidance approaches.

3) Comparative Experiments: Now we compare the per-
formance of three DRL-based approaches for 3D obstacle
avoidance, i.e., ours (curricular DRQN), the prior work
(curricular 3-frame DQN), and 3-frame PPO.

We first compare these approaches in random scenarios.
Fig. 4(a) shows the learning curve of these approaches. It can
be seen that the average reward obtained by ours is higher
than others and the converging speed of our approach is faster

8141

(a) (b)

Fig. 4. (a) The learning curve of three DRL-based approaches. (b) The
learning curve for the ablation study.

than others, which suggests that DRQN provides a better way
to record historical information to handle partial observation
as expected.

Table II shows the performance metrics of these ap-
proaches in random scenarios, where metrics are calculated
from the averaging results of 200 runs of scenarios. Ours
outperforms others in random scenarios. In particular, the
success rate (SR) and the expected return (ER) of ours are
much better than others. Moreover, generated trajectories of
ours are also smoother as it has the lowest average angular
velocity change (AAVC). Meanwhile, the mean length of
these generated trajectories is similar to others as the reach
time (RT) is similar to others.

We also test the performance of 3D obstacle avoidance
for all three approaches on other simulation scenarios, i.e.,
office-like scenarios and coffee-like scenarios. Notice that,
we only use random scenarios to train the networks in these
DRL-based approaches. We want to show that the generated
policy from our approach can also perform well in unseen
scenarios. In specific, Table III shows the success rate (SR)
for these approaches in 200 runs of both office-like and
coffee-like scenarios. Ours has the highest SR in all testing
scenarios, which indicates that our approach can generalize
well to new scenarios.

4) Ablation Study and Analysis: We also conduct an
ablation study to illustrate the effect of LSTM units and cur-

TABLE II
METRICS FOR THREE DRL-BASED APPROACHES IN RANDOM

SCENARIOS

Method SR ER RT AAVC

Prior work 76.5 445 7.94 0.56
PPO 57.5 404 5.88 0.49
Ours 92 715 6.78 0.43

TABLE III
SUCCESS RATE (SR) OF THREE APPROACHES IN TESTING SCENARIOS

Method Random Office-like Coffee-like

Prior work 76.5 38.5 61.5
PPO 57.5 56.0 60.3
Ours 92 88.5 81.5

riculum learning. DRQN without LSTM units is equivalent to
curricular 1-frame DQN, i.e., the DQN-based approach using
curriculum learning and taking one frame of local costmap
as input. Fig. 4(b) shows the learning curve for the abla-
tion study and Table IV shows corresponding performance
metrics in 200 runs of random scenarios.

The experimental results show that both LSTM units and
curriculum learning play an important role in the perfor-
mance of curricular DRQN. In specific, the training process
can be accelerated and stabilized by curriculum learning.
Notice that, the model needs to learn how to navigate in
various environments and it is more challenging for envi-
ronments with dense obstacles and long-range navigation
tasks. Clearly, the collision avoidance abilities learned in
simple navigation environments can help the model to nav-
igate in more challenging environments. Then we can use
curriculum learning to train the model in multiple navigation
environments with different levels of difficulty and transfer
the knowledge learned from simple environments to difficult
ones. Fig. 4(b) and Table IV show that curriculum learning
can stabilize and speed up the training. LSTM units can
help the networks to handle historical information for partial
observation. Notice that, curricular 1-frame DQN performs
better on AAVC and generates smoother trajectories. Because
without the ability to record historical information the ap-
proach provides a weaker intention to avoid obstacles.

C. Experiments in Real World

We also deploy the trained model to a real robot to perform
3D obstacle avoidance in the real world. As shown in Fig. 5,
the robot is based on a differential platform with a Kinect
v1 depth sensor. A Hokuyo UTM-30LX scanning laser
rangefinder is used to locate the robot in the environment.
Notice that, this laser sensor is not necessary, which can be
replaced by other equipment for the localization. A laptop
with an i7-8750H CPU and an NVIDIA 1060 GPU is used
as the computing platform.

In experiments, we use a particle filter-based state estima-
tor to provide the real-time position and velocity of the robot.
From the depth information provided by Kinect, we construct
the local costmap, that has the fixed size 6.0 m ×6.0 m and
the resolution 0.1 m.

We use paper boxes as scattered obstacles to create clut-
tered scenarios for testing. As shown in Fig. 5, our robot
can adjust its direction and go through obstacles with no
collision. We also test the 3D obstacle avoidance ability of
our robot in a real office environment. The demonstration
video for both simulation and real-world experiments can be

TABLE IV
METRICS FOR THE ABLATION STUDY

Method SR ER RT AAVC

Ours 92 715 6.78 0.43
– LSTM 72.5 482 7.68 0.38
– Curriculum 86.5 610 7.84 0.53

8142

Fig. 5. Our mobile robot platform (left). A testing environment with static
obstacles (upper right) and an office scenario (bottom right).

found at https://youtu.be/_Y9l6hEopyk.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a map-based end-to-end DRL
method for 3D obstacle avoidance with partial observation,
which is applied to achieve obstacle avoidance in complex
indoor environments only using a depth camera with a
narrow field of view. The approach is based on double DRQN
and using curriculum learning to accelerate and stabilize the
training process. Both qualitative and quantitative experi-
ments on simulation environments show that our approach is
efficient and outperforms other existing approaches. We also
show that the trained model can be easily deployed to a real
robot to perform 3D collision avoidance in its navigation.

In the future, we will try to use more 3D information
rather than compressing as a top view to excute obstacle
avoidance. Furthermore, we will investigate how to combine
multiple sensors to make up for the shortcomings of single
sensors. We also want to use our approach on MindSpore 2,
which is a new deep learning computing framework.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Kono-
lige, “The office marathon: Robust navigation in an indoor office
environment,” in Proceedings of the 37th International Conference on
Robotics and Automation (ICRA-2010). IEEE, 2010, pp. 300–307.

[2] C. Wang, L. Meng, S. She, I. M. Mitchell, T. Li, F. Tung, W. Wan,
M. Q.-H. Meng, and C. W. de Silva, “Autonomous mobile robot
navigation in uneven and unstructured indoor environments,” in Pro-
ceedings of the 30th International Conference on Intelligent Robots
and Systems (IROS-2017). IEEE, 2017, pp. 109–116.

[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[4] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Proceedings of the 10th International Conference on
Robotics and Automation (ICRA-1993). IEEE, 1993, pp. 802–807.

[5] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in Proceedings of the 30th
International Conference on Intelligent Robots and Systems (IROS-
2017). IEEE, 2017, pp. 1343–1350.

2https://www.mindspore.cn/

[6] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “To-
wards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning,” in Proceedings of the 35th International
Conference on Robotics and Automation (ICRA-2018). IEEE, 2018,
pp. 6252–6259.

[7] T. Fan, X. Cheng, J. Pan, D. Manocha, and R. Yang, “Crowdmove:
Autonomous mapless navigation in crowded scenarios,” Proceedings
of the 31th International Conference on Intelligent Robots and Systems
(IROS-2018), 2018.

[8] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Proceedings of the 34th International
Conference on Robotics and Automation (ICRA-2017). IEEE, 2017,
pp. 3357–3364.

[9] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable
agents with a realistic and rich 3d environment,” Workshop Track
Proceedings of the 6th International Conference on Learning Rep-
resentations (ICLR-2018), 2018.

[10] J. Choi, K. Park, M. Kim, and S. Seok, “Deep reinforcement learning
of navigation in a complex and crowded environment with a limited
field of view,” in Proceedings of the 36th International Conference on
Robotics and Automation (ICRA-2019). IEEE, 2019, pp. 5993–6000.

[11] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI-15), 2015.

[12] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning
in dynamic environments,” Robotics and Autonomous Systems, vol.
100, pp. 171–185, 2018.

[13] G. Chen, L. Pan, Y. Chen, P. Xu, Z. Wang, P. Wu, J. Ji, and X. Chen,
“Robot navigation with map-based deep reinforcement learning,” Pro-
ceedings of the 17th International Conference on Networking, Sensing
and Control (ICNSC-2020), 2020.

[14] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in Proceedings of the 30th International Con-
ference on Intelligent Robots and Systems (IROS-2017). IEEE, 2017,
pp. 2371–2378.

[15] K. Lobos-Tsunekawa and T. Harada, “Point cloud based reinforcement
learning for sim-to-real and partial observability in visual navigation,”
Proceedings of the 33th International Conference on Intelligent Robots
and Systems (IROS-2020), 2020.

[16] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps for
context-sensitive navigation,” in Proceedings of the 27th International
Conference on Intelligent Robots and Systems (IROS-2014). IEEE,
2014, pp. 709–715.

[17] X. Boyen and D. Koller, “Tractable inference for complex stochastic
processes,” Proceedings of the 14th conference on Uncertainty in
artificial intelligence (UAI-1998), 2013.

[18] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[19] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Proceedings of the 30th Neural Information
Processing Systems (NIPS-2016), 2016, pp. 4026–4034.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI-16), 2016.

[22] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning (ICML-2016), 2016.

[23] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning (ICML-2009), 2009, pp. 41–48.

[24] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Proceedings of the 17th
International Conference on Intelligent Robots and Systems (IROS-
2004), vol. 3. IEEE, 2004, pp. 2149–2154.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” Proceedings of the 3rd International Conference on Learning
Representations (ICLR-2015), 2015.

8143

