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Abstract—Multi-robot collision avoidance in a communication-
free environment is one of the key issues for mobile robotics
and autonomous driving. In this paper, we propose a map-
based deep reinforcement learning (DRL) approach for collision
avoidance of multiple robots, where robots do not communicate
with each other and only sense other robots’ positions and
the obstacles around them. We use the egocentric grid map
of a robot to represent the environmental information around
it, which can be easily generated by using multiple sensors
or sensor fusion. The learned policy generated from the DRL
model directly maps 3 frames of egocentric grid maps and
the robot’s relative local goal positions into low-level robot
control commands. Compared to other methods, the map-based
approach is more robust to noisy sensor data and does not require
the expensive movement data of other robots, like velocities,
accelerations and paths. We first train a convolutional neural
network for the navigation policy in a simulator of multiple
mobile robots using proximal policy optimization (PPO), where
curriculum learning strategy is used to accelerate the training
process. Then we deploy the trained model to real robots to
perform collision avoidance in their navigation. We evaluate the
approach with various scenarios both in the simulator and on
three differential-drive mobile robots in the real world. Both
qualitative and quantitative experiments show that our approach
is efficient with high success rate. The demonstration video can
be found at https://youtu.be/jcLKlEXuFuk.

Index Terms—multi-robots collision avoidance, reinforcement
learning, egocentric grid map

I. INTRODUCTION

Multiple robot systems are widely used in various robotics
applications, such as autonomous warehouse, search and res-
cue operations, and autonomous driving. Multi-robot collision
avoidance is a key issue [1] for these applications, which
allows each robot to reach its target position from a starting
place while avoiding collisions with other robots and obstacles.
The dynamic interactions between diverse autonomous robots
and the uncertainty in the environment make the problem
highly challenging. To improve the reliability and performance
of multiple robot systems, it is vital to develop an approach
for efficient and safe collision avoidance of multiple robots.

Multi-robot collision avoidance methods can generally be
classified into two categories: centralized methods and de-
centralized methods. A centralized method usually provides
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a center server to determine each robot’s action using an
optimization algorithm after collecting all the relevant infor-
mation [2], [3]. However, such a system is fragile due to
its requirements of a static central server and the reliable
communication between the server and all robots. Moreover,
it becomes more and more challenging for the system to
overcome the increasing number of robots [3].

Different from the centralized method, a decentralized
method allows each robot to perform collision avoidance re-
plying on its local perception of the surrounding environment,
which no longer requires a central server. Most existing decen-
tralized methods require the movement data of other robots,
like velocities, accelerations and paths. For instance, Velocity
Obstacles (VO) [4] based approaches are widely used, which
require velocities of other robots to induce the VO for the
selection of collision-free motion. Optimal reciprocal collision
avoidance (ORCA) [5] is one of the most successful VO
based approaches, which guarantees collision-free trajectories
except for densely packed conditions. ORCA has also been
extended to nonholonomic robots (NH-ORCA) [1], [6], [7].
These approaches usually require perfect perception to extract
information on shapes and speeds of other robots, which is not
easy to achieve in most real-world applications. On the other
hand, a large amount of human-engineered parameters are
required for these approaches to achieve good performances
in various scenarios, which limits their scalability in practice.

Recently, deep learning based approaches have received
considerable attentions in robot navigation. In particular, imi-
tation learning has been used to train an end-to-end network
to predict the steering angle of the car with center/front
image as input [8]. Liu et al. [9] train a neural network
to produce the collision avoidance policy for a single robot
that maps egocentric grid maps to robot control commands.
ORCA datasets have also been used to train a multi-robot
collision avoidance policy [10]. However, supervise learning
approaches need large amounts of labeled data to achieve a
good performance.

Inspired by ORCA, Chen et al. [11] train a collision
avoidance policy using deep reinforcement learning (DRL)
with the motion data of other robots as parts of states of the
DRL model, which maps the motions states of the robot and
others to its control commands. The approach requires perfect
perception of the environment and high computational effort to
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generate these motion data, which limits its applications. Later
the work is extend by using recurrent neural network to receive
multi-robot information [12]. However, perfect perception and
high computational effort are still required for the extended
approach.

On the other hand, Fan et al. [13], [14] introduce an end-
to-end DRL navigation approach by using raw sensor data,
i.e., 2D laser scan data, the target position, and the velocity of
the robot to predict collision-free motion commands. Notice
that, expensive motion data of other robots are not required in
the system. A one-dimensional convolutional neural network is
used to process the 2D laser scan data. After training in several
simulation scenarios, the approach produces a policy that can
generate collision-free trajectories for the robot However, the
approach is only restricted to 2D laser sensors.

Egocentric gird maps of a robot are used to represent the
environmental information around it in our previous work [15],
which are considered as inputs of the trained network in
deep Q-learning to predict collision-free motion commands
for a single robot in static environments. Egocentric gird
maps, i.e., local costmaps1, have been widely applied in robot
navigation [9], [16], which can be easily generated by using
multiple sensors or sensor fusion with strong noise resistance.

In this paper, we extend our work and propose an end-to-end
decentralized DRL multi-robot collision avoidance approach
in a communication-free environment. The learned policy
directly maps 3 frames of egocentric grid maps and the robot’s
relative target position into low-level robot control commands.
We first train a convolutional neural network of the navigation
policy in a simulator of multiple mobile robots using proximal
policy optimization (PPO) [17], where curriculum learning
strategy [18] is used to accelerate the training process. Then
we deploy the trained model to real robots to perform collision
avoidance in their navigation. Notice that, egocentric grid
maps can be easily generated by using multiple sensors or
sensor fusion with strong noise resistance. Then it is easier
to deploy the approach to a real robot. We evaluate the
approach with various scenarios both in the simulator and
on three differential-drive mobile robots in the real world.
Both qualitative and quantitative experiments show that our
approach is efficient with high success rate.

Our main contributions are summarized as follow:
• We propose a map-based DRL multi-robot collision

avoidance approach in a communication-free environ-
ment. Egocentric grid maps are used to represent the
environmental information around the robot.

• We train the neural network of the navigation policy in a
simulator of multiple mobile robots using PPO, which can
be deployed to real robots to perform collision avoidance
in their navigation.

• We evaluate our approach with various scenarios both
in the simulator and on three differential-drive mobile
robots in the real world. Both qualitative and quantitative
experiments show that our approach is efficient and safe.

1http://wiki.ros.org/costmap 2d

The rest of this paper is organized as follows. The problem
is formulated in Section II. Section III describes our approach.
Section IV provides experimental details and results both in
the simulator and on robots in the real world, followed by
conclusions in Section V.

II. PROBLEM FORMULATION

Multi-robot collision avoidance requires a group of N mo-
bile robots with nonholonomic or holonomic constraints to
perform corresponding trajectories to their target places while
avoiding collisions with each other and with obstacles in their
environment.

To simplify the discussion, we assume that each robot is a
circular nonholonomic differential drive mobile robot with the
same radius R. At each time step t, each robot i (1≤ i≤N) first
receives its sensing data st

i , then chooses an action at
i to move

towards its local goal gt
i , where gt

i contains robot’s relative
position and orientation (pose) in a path that is generated by
its global planner to reach its target. In specific, we consider

Mt
i = f (st

i),

at
i = πθ (Mt

i, gt
i),

where Mt
i denotes the egocentric grid map generated from the

current sensing data st
i by the function f to specify the 2D

map of the obstacles that can be obtained by robot’s sensors
in a plane horizontal to the ground, and πθ denotes the policy
specified by parameters θ to choose an action at

i based on the
current egocentric grid map Mt

i and the local goal gt
i . In this

paper, we denote action at
i = (vt

i, ω t
i ), where vt

i is the linear
velocity and ω t

i is the angular velocity that the robot i needs
to perform until the next time step t +1.

In multi-robot collision avoidance, each robot i moves from
the starting position p0

i to the target position pg
i , while avoiding

collisions with each other and with obstacles Bk (1≤ k≤M) in
the environment. We intend to minimize the expectation of the
arrival time tg

i for every robot 1≤ i≤ N under the constraint
that no collision occurs. In specific,

argmin
θ

E[
N

∑
i=1

tg
i | πθ ],

s.t. for each 1≤ i≤ N, 1≤ j ≤ N, i 6= j, and 1≤ k ≤M,

pt+1
i = pt

i +∆t ·πθ (Mt
i,g

t
i) and ptg

i
i = pg

i ,∥∥pt
i−pt

j
∥∥> 2R and

∥∥pt
i−Bk

∥∥> R.

Notice that, the second line of conditions requires each robot
reaching its target and the third line requires no collision. In
the following, we introduce our approach towards the intent.

III. APPROACH

We begin this section by describing key ingredients of the
proximal policy optimization (PPO) reinforcement learning
algorithm for multiple robots. Then, we describe the details
on the network architecture and the training process for the
multi-robot collision avoidance policy.



A. Proximal policy optimization with multiple robots

There are mainly two kinds of reinforcement learning al-
gorithms: value function based and policy gradient methods.
Value function based methods attempt to optimize the perfor-
mance by training the value function V (s) or the action-value
function Q(s,a) for a state s and an action a. Normally, these
methods enjoy better sampling efficiency. However, multi-
robot collision avoidance requires a stochastic policy for each
robot, where value function based methods may be fragile.
In contrast, policy gradient methods directly optimize the
stochastic policy, which is more robust in this case.

Generally, policy gradient methods optimize a stochastic
policy πθ by maximizing the objective function J(πθ ) using
stochastic gradient ascent. In specific,

∇θ J (πθ ) = E
τ∼πθ

[
T

∑
t=0

∇θ logπθ (at |st)Aπθ (st ,at)

]
,

θk+1 = θk +α∇θ J
(
πθk

)
,

where τ is a trajectory and Aπθ is the advantage function for
the policy πθ .

Vanilla Policy Gradient method [19] only works on-policy,
i.e., the value of an action estimated by the critic must have
been produced recently by the actor, otherwise the bias would
increase dramatically. This prevents the use of an experience
replay memory as in DQN [20] to stabilize learning. Then the
method is unstable for long trajectories, which leads to poor
sampling efficiency.

Proximal policy optimization (PPO) [17] is to introduce
a surrogate objective which avoids performance collapse by
guaranteeing monotonic policy improvement. It updates and
maintains two networks in the training process, i.e., policy
network πθ , which is used to predict the next action based on
the input state, and value network Vφ , which is used to estimate
the state’s expected return. There are two primary variants of
PPO: PPO-penalty and PPO-clip. We apply PPO-clip in this
paper. In specific, PPO-clip updates policies via

θk+1 = argmax
θ

Es,a∼πkk
[L(s,a,θk,θ)] , (1)

and L is defined as

L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

Aπθk (s,a), g
(
ε,Aπθk (s,a)

))
,

g(ε,A) =
{

(1+ ε)A A≥ 0,
(1− ε)A A < 0,

where ε is the clip function ration and A is the advantage
function that is computed by generalized advantage estimation
(GAE) [21], i.e.,

At = δt +(γλ )δt+1 + · · ·+ · · ·+(γλ )T−t+1
δT−1, (2)

where δt = rt +γVφ (st+1)−Vφ (st), the discount factor 0≤ γ <
1, and the parameter 0≤ λ ≤ 1.

In the following, we introduce details of our PPO based
approach, including the observation space, the action space,
the reward function, and the network architecture.

1) Observation space: We use the latest three frames of
egocentric grid maps 〈Mt−2

i , Mt−1
i , Mt

i〉 and relative local
goals 〈gt−2

i , gt−1
i , gt

i〉 to be our input ot
i . In specific, Mt

i is
generated by a laser scan with 180 degrees horizontal Field of
View (FOV), which encodes positions of obstacles and other
robots. The local goal gt

i = (xt
i , yt

i, α t
i ) is a tuple that includes

the next position (xt
i , yt

i) and the orientation (pose) α t
i in the

path towards the target. Notice that, we can estimate motion
information, i.e., velocities, accelerations and paths, of both
the ego robot and other robots from these three frames of
egocentric grid maps.

There is a value in each cell of an egocentric grid map
to represent the environment. In particular, cells of value 25
denote the obstacles and other robots around the robot. Cells
of value 200 denote free space and cells of value 125 denote
the undetected place with the laser scan. In the center of each
egocentric grid map, there is a circle which denotes the ego
robot and the cells in the circle have the value 75. Moreover,
we convert the egocentric grid map to a gray image to ease the
set up of the network. Without loss of generality, we identity
a grid map with its corresponding gray image in the paper.

2) Action space: The action space is a set of permissible
velocities in continuous space. The action at

i of a differential
robot consists of a linear velocity vt

i and an angular velocity
ω t

i , i.e., at
i =(vt

i, ω t
i ). In this paper, we set vt

i ∈ [0, 0.6] and ω t
i ∈

[−0.9, 0.9], which can be directly performed by differential
robots used in our experiment. Note that, vt

i ≥ 0, i.e., moving
backwards is not allowed, due to lack of rear sensors.

3) Reward: The goal of the agent is to maximize its
cumulative reward in reinforcement learning. In our problem,
the objective is minimize the mean arrival time for each robot
arriving its local goal under the collision-free constraint. Each
robot has the same reward function in our setting. We use rt

to denote the reward received by the robot at time step t. We
use the following reward function in this work,

rt = rt
g + rt

c + rt
s.

Note that rt consists of three parts, rt
g, rt

c, and rt
s.

In particular, rt
g specifies the penalty when the robot goes

far of its local goal. rarr > 0 is the consistent reward when the
robot arrives its local goal. We define rt

g as:

rt
g =

{
rarr if

∥∥pt −pg
∥∥< 0.3,

ε1(
∥∥pt−1−pg

∥∥−∥∥pt −pg
∥∥) otherwise,

where pt is the position of the robot at time t, pg is the position
of the local goal, and ε1 is the hyper parameter that controls
the penalty amount.

rt
c specifies the penalty when the robot encounters a col-

lision. Note that PPO considers stochastic policies, we add a
penalty when the robot gets closer to obstacles or other robots.
We define rt

c as:

rt
c =


rcol if collision,
ε2
(
dt

min−dt−1
min

)
if dt

min < 1,
0 otherwise,



where rcol < 0 is the consistent penalty for the collision, dt
min

denotes the distance between the robot and the closest obstacle
or other robot boundary at time t, and ε2 is the hyper parameter
that controls this penalty amount.

At last, we apply a small negative penalty for each time
step, i.e., rt

s < 0, to encourage short paths.
In this work, we set rarr = 500, ε1 = 100, ε2 = 200, rcol =

−500, and rt
s =−5 in the training procedure.

4) Network Architecture: The architecture of our policy
network is shown in Fig. 1. The inputs of the network consist
of two parts, i.e., three consecutive frames of egocentric grid
maps with 48×48 gray pixels and corresponding local goals.

The network first produces feature maps for grid maps
using four convolutional layers and four max pooling layers.
Followed by a fully-connected layer with 512 units, these
feature maps are converted to a 512 dimensional vector. The
network also projects three frames of local goals to a 9
dimensional vector. Then the network combines both vectors
and feeds them to two fully-connected layers with 512 units.
At last, the network applies a fully-connect layer with 2 units
without activations to produce the output, i.e., the mean of the
linear velocity vt and the mean of the angular velocity ω t .

Actions of the robot are sample from the Gaussian distribu-
tion N (at

mean, at
logstd), where at

logstd is the log standard devi-
ation generated by a standalone network and at

mean = (vt ,ω t).
We also use a clip function to ensure that the resulting actions
are valid in the action space. The value network has the same
architecture as the policy network, except the last layer is
modified to only output the value of the state.

B. Curriculum Learning

Curriculum learning [18] has recently been shown as an
efficient strategy that can help find a better local minima and
accelerate the training process. The main idea of curriculum
learning is to decompose a hard learning task into several
simple ones, start with the simplest task and level up the
difficulty gradually.

In this work, we use Gazebo [22] to build environments with
multiple robots and obstacles to train the robot for multi-robot
collision avoidance. Two examples of our training scenarios
are shown in Fig. 2. The first example illustrates environments
that randomly choose locations for obstacles, the starting and
target positions of robots, which would help the robot to be
able to avoid obstacles, a.k.a., random scenario. The second
example illustrate environments that randomly place robots on
a circle with a random radius, a.k.a., circular scenario, which
help the robot to be able to interact with other robots.

In the training process, we gradually increase the number
of obstacles and robots, and increase the distance from the
starting position to the target position to level up the com-
plexity of multi-robot obstacle avoidance problem. We level
up the difficulty only when robots have performed well in
current environments. In particular, we divide the training
process into two stages. In the first stage, the robot is trained
in environments with 6 different robots and 4 different shape
obstacles, and the distance from the starting position to the

Algorithm 1: Learning Procedure

1 Randomly initialize policy network πθ and value
network Vφ ;

2 Initialize PPO buffer Di, i = 1,2, . . . ,N for each robot;
3 for epoch e = 1,2, . . . ,E do
4 for step k = 1,2, . . . ,K do
5 at

i = πθ (ot
i), i = 1,2, . . . ,N

6 (rt
i ,o

t+1
i ) = env(at

i), i = 1,2, . . . ,N
7 (ot

i,r
t
i ,a

t
i)→ Di, i = 1,2, . . . ,N

8 if all robots are arrived, encounter a collision,
or get stuck then

9 reset env
10 if length Di > Dmax/N, for every i = 1,2, . . . ,N

then
11 compute advantages At

i using GAE with
Equation (2)

12 R̂t
i = ∑

T
t ′=t

(
γ t ′−trt ′

i +Vφ (oT
i )
)

13 update policy θ by Equation (1)
14 update φ by

φk+1 = argminφ
1
|D| ∑ot

i∈D
(
Vφk (o

t
i)− R̂t

i
)2

15 clear D and reset env
16 break
17 end
18 end

target position for each robot is gradually increased to level
up the complexity. In the second stage, the robot is trained
simultaneously in these two scenarios, which improve the
robustness of the DRL policy in the real world.

The training procedure at each stage is specified in Alg. 1.
Parameters for the policy network πθ and the value network
Vφ are initialized randomly (Line 1). Each robot has the same
size of the buffer (Line 2) and stores the collected experience
in it (Line 5-7). When all buffers are full, the advantages At

i of
each piece of experience (Line 11) and the cumulative discount
rewards R̂t

i are calculated (Line 12) to update θ via stochastic
gradient ascent (Line 13) and update φ via gradient descent
(Line 14). Finally, the environment is reseted after clearing the
buffer (Line 15).

IV. EXPERIMENTS

In this section, we evaluate our PPO based multi-robot
obstacle avoidance approach in both the simulation and real
world. We first specify details of our implementation including
the hyper parameters, hardware and software for training the
networks. Then, we quantitatively evaluate the performance of
our map-based multi-robot navigation policy in various simu-
lation scenarios and compare it with other existing approaches.
We also deploy the trained model to a real robot for its multi-
robot obstacle avoidance module in the navigation system and
evaluate the navigation performance of the robot in real world.
Both qualitative and quantitative experiments show that our
approach is efficient with high success rate.
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Fig. 1. The architecture of our PPO policy network. The network takes three frames of egocentric grid maps and three relative local goals as inputs, and
outputs a linear velocity and an angular velocity.

(a) Random scenario (b) Circular scenario

Fig. 2. Environments of both training scenarios in our experiment. (a) The
environment randomly places six robots and four obstacles with different
shapes. (b) The environment randomly places six robots on a circle with
a random radius. Green cylinders denote robots in the environment, white
cuboids and cylinders denotes static obstacles.

A. Reinforcement Learning Setup

We implement the approach for a customized differential
drive robot in a simulation environment using Gazebo. A laser
scanner with 180 degrees horizontal FOV is mounted on the
front of the robot as shown in Fig. 2. We trained our PPO
based agent with the hyper parameters listed in Table I.

TABLE I
SYSTEM PARAMETERS

Parameter Value

learning rate for policy 3×10−4

learning rate for value 1×10−3

discount factor (γ) 0.99
lambda in GAE (λ ) 0.97

replay buffer size (Dmax) 2000
image size 48×48

max episode length 300
clip ratio (ε) 0.2

Robot radiu (R) 0.3

We implement neural networks in TensorFlow and train
them using the Adam optimizer [23]. A computer with an
i9-9900k CPU and an NVIDIA Titan RTX GPU is used for

(a) Reward curve at first stage (b) Reward curve at second stage

Fig. 3. The average reward curve of both PPO based approaches, i.e.,
our map-based PPO approach and the PPO approach with 1D convolution
network, at two stages of the training procedure. (a) shows the average reward
curve of both approaches at the first stage. When both approaches reach their
convergences at the first stage, we start to train them for the second stage. (b)
shows the average reward curve at the second stage.

the training. It takes around 36 hours to train the networks for
a good performance in testing environments, where 90% of
the time is used to collect experience.

Besides our map-based PPO approach, we also implemented
another PPO based approach, i.e., PPO with one-dimensional
convolution network, introduced in [14], and an ORCA based
approach, NH-ORCA [1], [6], [7]. We trained both PPO based
approaches at the same time and guaranteed them to reach
convergence at each stage in the training procedure. In specific,
Fig. 3 shows the comparison of the average reward curve of
both PPO based approaches. It can be seen that the average
reward obtained by our approach is higher than the other PPO
based approach at both stages. Fig. 3(b) also shows that the
converge speed of our approach is much faster than that of the
PPO approach with one-dimensional convolution network.

B. Experiments on simulation scenarios

1) Performance metrics: We introduce three metrics to
evaluate the performance of approaches for multi-robot ob-
stacle avoidance as the following:
• Success rate π̄: the ratio of the episodes that end with

every robots reaching their targets without any collision.
• Extra time t̄: the time required for every robots to suc-

cessfully reach their targets without any collisions minus



the time for every robots to drive straight to their targets
with the maximum speed.

• Average linear velocity v̄: the average linear velocity for
every robots during the navigation.

TABLE II
METRICS FOR DIFFERENT APPROACHES IN CIRCULAR SCENARIO

Enviroment Method π̄ t̄ (mean/std) v̄ (mean/std)

6 robots
PPO with 1D conv 1.00 3.65/0.92 0.55/0.09

NH-ORCA 1.00 3.17/1.68 0.44/0.16
Map-based PPO 1.00 2.87/0.45 0.55/0.09

8 robots
PPO with 1D conv 1.00 4.43/0.48 0.53/0.11

NH-ORCA 0.97 4.50/2.43 0.52/0.11
Map-based PPO 1.00 3.01/0.43 0.56/0.06

10 robots
PPO with 1D conv 0.98 4.89/0.76 0.54/0.10

NH-ORCA 0.89 6.15/3.90 0.39/0.17
Map-based PPO 1.00 4.78/0.48 0.56/0.07

2) Comparative experiments: Now we compare the perfor-
mance of three different approaches for multi-robot obstacle
avoidance, i.e., our map-based PPO approach, NH-ORCA, and
the PPO approach with 1D convolution network. We first
compare these approaches in environments of the circular
scenario. The scenario is similar to the training scenario,
except that the starting and target positions of these robots are
uniformly along the circle. Table II shows the performance
metrics of these approaches in the circular scenario, where
metrics are calculated from the averaging results of 50 differ-
ent environments in each case. Note that, our map-based PPO
approach outperforms others in this scenario. In particular,
both PPO based approaches perform better than NH-ORCA
for success rate π̄ and extra time t̄. Our map-based PPO
approach received a 100% success rate for all environments.
In first two kinds of environments, i.e., 6 and 8 robots in
environments, extra time t̄ of our approach is much shorter
than others. In dense-robot environments, i.e., more than 10
robots, extra time t̄ of our approach is close to that of the PPO
approach with 1D convolution network, as it requires more
computational effort maintaining safe distances between each
robots. Moreover, variances of these metrics for our approach
is smaller than others, which shows that the generated polices
of our approach are more stable and corresponding trajectories
are smoother than that of others. Fig. 4 illustrates trajectories
of robots in environments of the circular scenario generated
by different approaches.

3) Robustness: Note that, NH-ORCA requires perfect per-
ception to avoid other robots, which is difficult to achieve in
practice. On the other hand, PPO based approaches are more
robust to noisy sensor data. To expose this problem, we add
Gaussian noise to the position and velocity information of
other robots for each robot in environments with 10 robots
of the circular scenario. Meanwhile, these Gaussian noise
information is projected to corresponding laser data for both
PPO based approaches.

(a) Trajectories by PPO with 1D convolution network

(b) Trajectories by NH-ORCA

(c) Trajectories by Map-based PPO

Fig. 4. Trajectories of robots in environments of the circular scenario with
6, 8, and 10 robots for different approaches.
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Fig. 5. Success rate (reach rate) of different approaches when the variance
of Gaussian noise increases.

Fig. 5 shows the corresponding success rate for different
approaches when the variance of Gaussian noise increases.
Clearly, the performance of NH-ORCA declines dramatically.

4) Navigation in other simulation scenarios: We also test
the performance of the obstacle avoidance policy generated by
our approach on other simulation scenarios. In particular,

• Random mixing scenario: environments that randomly
place six robots and four obstacles with different shapes,
and set the target position of each robot 2 to 5 meters
away from its starting position.

• Random static scenario: environments that randomly
place one robot and eight obstacles with different shapes,
and set the target position of the robot 2 meters away
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(d) Swap scenario

Fig. 6. Trajectories of robots from the obstacle avoidance policy generated
by our map-based PPO approach in different scenarios.

from its starting position.
• Cross scenario: environments that require two groups of

robots to move cross each other.
• Swap scenario: environments that require two groups

of robots to move towards each other and swap their
positions.

Notice that, we only use environments from the random
scenario and the circular scenario to train the networks for the
obstacle avoidance policy in our map-based PPO approach. We
want to show that the generated policy can also perform well to
other unseen scenarios. In specific, Table III shows the success
rate of the generated policy in 100 different environments of
the above four scenarios, which indicates that our approach
can generalize well to new scenarios. In environments of both
mixing and static scenario, we found few collisions when the
path of a robot from its starting point to its target has to go
through a really dense area. In some rare cases, a robot might
rub the other in some environments of the swap scenario. Fig. 6
illustrates trajectories of robots from the obstacle avoidance
policy generated by our map-based PPO approach in these
scenarios.

C. Navigation in real world

We also deploy the trained model to real robots to perform
multi-robot obstacle avoidance in real world. As shown in
Fig. 7, the robot is based on TurtleBot 2 with Kobuki base
and uses a Hokuyo UTM-30LX scanning laser Rangefinder
as the 2D laser sensor. The robot applies an NVIDIA Jetson

TABLE III
SUCCESS RATE IN OTHER SIMULATION SCENARIOS

scenario success rate

Random mixing scenario 96.7
Static random scenario 98.0

Cross scenario 100.0
Swap scenario 97.5

Fig. 7. The robot is based on TurtleBot 2 with Kobuki base using a Hokuyo
UTM-30LX scanning laser Rangefinder and an NVIDIA Jetson TX2. Real
world testing environments (right) are composed with paper boxes as static
obstacles (upper right) and a moving suitcase (pushed by a person) as a
dynamic obstacle (bottom right).

TX2 as its computing platform. In experiments, relative local
goals of the robot are provided by a particle filter based on a
state estimator. The egocentric grid map is constructed from
the laser data, which has the fixed size 6.0× 6.0m and the
resolution 0.1m at each time step. We also use paper boxes
and suitcases to act as static and dynamic obstacles in tests.

We implement three versions of such a robot and test the
performance of our approach in following scenarios.
• Static scenario: environments that place paper boxes and

the suitcase to block the robot’s path from its starting
position to its target.

• Dynamic scenario: environments in which a person
pushes the suitcase across the path of the robot.

• Multi-robot scenario: environments that place three
robots at the vertices of a triangle and set the target of
each robot at the center of its opposite side.

The experiment shows that by deploying the trained model
to their obstacle avoidance module in the navigation system,
these robots can efficiently reach their targets with no col-
lision in all three scenarios. Fig. 8 illustrates trajectories of
three robots in an environment of the multi-robot scenario.
The demonstration video for both simulation and real world
experiments can be found at https://youtu.be/jcLKlEXuFuk.

V. CONCLUSIONS

In this paper, we extend our previous work for single
robot and propose a map-based PPO approach for multi-
robot collision avoidance, where robots do not communicate
with each other and only sense other robots’ positions and
the obstacles around them. We consider three consecutive
frames of egocentric grid maps and corresponding logical goal

https://youtu.be/jcLKlEXuFuk


Fig. 8. Trajectories of robots in an environment of the multi-robot scenario.
Every robot reaches its target smoothly and efficiently without any collision.

positions as inputs of the training networks in PPO, which
outputs the required linear velocity and angular velocity of
the robot. We apply a two stage training procedure to train
networks using environments from the random scenario and
the circular scenario. We also show that the trained model
can generalize well to new scenarios. Both qualitative and
quantitative experiments on simulation environments show
that our approach is efficient and outperforms other existing
approaches with higher success rate. We also show that the
train model can be easily deployed to real robots to perform
multi-robot collision avoidance in their navigation.
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