

USTC Robotics Lab

Robot Navigation with Map-Based Deep Reinforcement Learning

Guangda Chen, Lifan Pan, Yu'an Chen, Pei Xu, Zhiqiang Wang, Peichen Wu, Jianmin Ji* and Xiaoping Chen

School of Computer Science and Technology, University of Science and Technology of China

https://cgdsss.github.io/cgdsss@mail.ustc.edu.cn

Robot Navigation

- ◆ Navigation is the basic ability of mobile robots.
- ◆ Navigation is widely used in all kinds of mobile robots, unmanned driving and drones.

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

http://wiki.ros.org/navigation

Robot Navigation

Traditional Collision Avoidance

- ◆ based on some assumptions that are not to be satisfied in practice
- ◆ may require a lot of computational cost
- ◆ many parameters that need to be tuned manually
- cannot learn from past experience automatically
- difficult to generalize well to unanticipated scenarios.

(b) ORCA

Supervised learning based OA

- require a massive manually labeled dataset
- the performance of learned models is largely limited by the strategy of generating training labels

(a) *RAL-15*

RELATIVE GOAL POSITION

- (a) Giusti, Alessandro, et al. "A machine learning approach to visual perception of forest trails for mobile robots." IEEE Robotics and Automation Letters 1.2 (2015): 661-667.
- (b) Pfeiffer, Mark, et al. "From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots." ICRA-17.

(b) *ICRA-17*

Supervised learning based OA

- require a massive manually labeled dataset
- the performance of learned models is largely limited by the strategy of generating training labels

However, deep reinforcement learning (DRL) based methods learn from a large number of trials and corresponding feedback (rewards), rather than from labeled data.

(b) *ICRA-17*

Agent-level

- [1] Chen, Yu Fan, et al. "Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning." *ICRA 2017*. IEEE.
- [2] Chen, Yu Fan, et al. "Socially aware motion planning with deep reinforcement learning." IROS 2017.
- [3] Everett, Michael, Yu Fan Chen, and Jonathan P. How. "Collision Avoidance in Pedestrian-Rich Environments with Deep Reinforcement Learning." arXiv preprint arXiv:1910.11689 (2019).

$$\begin{split} \mathbf{s} &= [d_g, \ v_{pref}, \ \psi, \ r] \\ \tilde{\mathbf{s}}^o &= [\tilde{p}_x, \ \tilde{p}_y, \ \tilde{v}_x, \ \tilde{v}_y, \ \tilde{r}, \ \tilde{d}_a, \ \tilde{r} + r] \end{split}$$

Agent-level

- requiring precise and complex front-end perception processing modules
- sensor type independence
- can be adapted to different front-end perception modules
- easy to design training simulation environment
- easy transfer to the real environment

$$\mathbf{s} = [d_g, \ v_{pref}, \ \psi, \ r]$$

$$\tilde{\mathbf{s}}^o = [\tilde{p}_x, \ \tilde{p}_y, \ \tilde{v}_x, \ \tilde{v}_y, \ \tilde{r}, \ \tilde{d}_a, \ \tilde{r} + r]$$

Sensor-level

- [1] Long, Pinxin, et al. "Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning." ICRA 2018. IEEE.
- [2] Fan, Tingxiang, et al. "Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios." The International Journal of Robotics Research (2020).

Sensor-level

- do not require a complex and time-consuming front-end perception module
- only restricted to specific sensors

- use the egocentric local grid map of a robot to represent the environmental information around it
- ◆ has the advantages of both agent-level and sensor-level methods
- adaptable to various sensors, easy to be trained in simulation environments, more robust to noisy sensor data, does not require robots' movement data and a precise and complex front-end perception

Multi-

sensor

Data

procedure

$$\mathbf{M}_t = f_{\lambda}(s_t)$$
 $a_t = \pi_{\theta}(\mathbf{M}_t, g_t, v_t, \boldsymbol{\omega}_t)$
 $\underset{\pi_{\theta}}{\operatorname{argmin}} \mathbb{E}[t_g | a_t = \pi_{\theta}(\mathbf{o}_t),$

$$\mathbf{p}_{t} = \mathbf{p}_{t-1} + a_{t} \cdot \Delta t,$$

$$\forall k \in [1, N] : ||\mathbf{p}_{t} - (\mathbf{p}_{obs})_{k}|| > R]$$

Base

Controller

Robot Velocity

DRL

Planner

Local

Goal

Costmap

SLAM

Path

Planner

Costmap Generator

MDP:
$$M = (S, A, P, R, \gamma)$$

The quality of policy $\pi(a|s)$ can be evaluated by Q-value :

$$Q^{\pi}(s,a) = \mathbb{E}^{\pi}[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t},a_{t}) | s_{0} = s, a_{0} = a]$$

Q-learning algorithm

$$Q^*(s_t, a_t) = R(s_t, a_t) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

DQN loss function: $(y_t - Q(s_t, a_t; \theta'))^2$

$$y_t = \begin{cases} r_t & \text{if episode ends} \\ r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta') & \text{otherwise} \end{cases}$$

Double DQN

$$y_t = r_t + \gamma Q(s_{t+1}, \underset{a_{t+1}}{\operatorname{argmax}} Q(s_{t+1}, a_{t+1}; \theta); \theta')$$

Observation

- grid maps
- relative goal position
- current velocity

> Action

- angular velocity and linear velocity
- a set of allowable velocity in discrete space

> Reward

$$r_t = (r^g)_t + (r^c)_t + (r^s)_t$$

Reward Shaping:

$$(r^g)_t = \begin{cases} r_{arr} & \text{if } \|\mathbf{p}_t - \mathbf{g}\| < 0.2 \\ \varepsilon(\|\mathbf{p}_{t-1} - \mathbf{g}\| - \|\mathbf{p}_t - \mathbf{g}\|) & \text{otherwise} \end{cases}$$

> Environment

- Gazebo simulator
- gradually increase the number of obstacles
- the distance from the starting point to the target point gradually increases

> Training algorithm

- Dueling DDQN
- Prioritized experience reply
- Curriculum Learning

Network

 a CNN-based deep convolutional neural network

Experiments -- simulation scenarios

- **Expected return** E_r is the average of the sum of rewards of episodes.
- Arrival rate $\bar{\pi}$ is the ratio of the episodes in which the robot reaching the goals within a certain step without any collisions over the total episodes.
- Arrival step \bar{S} is the average number of steps required to successfully reach the target point without any collisions
- Average angular velocity change $\nabla \omega$ is the average of the angular velocity changes for each step, which reflects the smoothness of the trajectory.

Comparative Policy:

- curricular DQN policy
- ◆ normal (non-curricular) DQN policy
- ◆ PPO with one-dimensional convolutional network

Experiments -- simulation scenarios

◆ Comparative experiments

Method	E_r	$\bar{\pi}$	\bar{s}	$\nabla \omega$
PPO with 1d conv	467.87	0.85	40.19	0.46
Normal DQN	547.43	0.91	27.76	0.39
Curricular DQN	617.04	0.94	26.13	0.35

◆ Robustness to noise

Experiments -- real-world

https://youtu.be/Eq4AjsFH_cU

- Differential wheel robot
- ➤ Hokuyo UTM-30LX laser
- > i7-8750H CPU, NVIDIA 1060 GPU
- ▶ 6.0×6.0m and resolution0.1m local grid map
- Complex static environment built by cartons
- Dynamic pedestrian environment
- Long-distance open lobby environment
- Long-distance corridor environment

CONCLUSIONS

- ◆ A model-free deep reinforcement learning method for mobile robot navigation with map-based obstacle avoidance, which directly maps egocentric local grid maps to an agents steering commands in terms of target position and movement velocity.
- Based on dueling double DQN with prioritized experience reply, and integrate curriculum learning techniques to further enhance our performance.
- ◆ Both qualitative and quantitative results show that the map-based obstacle avoidance method outperforms other related DRL-based methods in multiple indicators in simulation environments and is easy to be deployed to a robotic platform.
- Integrated our obstacle avoidance policy into the navigation framework for long-range navigation testing.

Extended work (https://cgdsss.github.io/)

Guangda Chen, Shunyi Yao et. al. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning[J]. *Sensors*, 2020, 20(17): 4836

Youtube: https://youtu.be/KOb1q23L7-U Bili: https://youtu.be/KOb1q23L7-U Bili: https://www.bilibili.com/video/BV12f4y1Q7cx/

