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Robot Navigation

€ Navigation is the basic ability of mobile robots.

€ Navigation is widely used in all kinds of mobile robots, unmanned
driving and drones.

R:.0.B.0.T. Comics

WHW.WILLOWGARAGE.COM

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

http://WIKI.ros.org/navigation
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Robot Navigation
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Traditional Collision Avoidance

@ based on some assumptions that are not to be satisfied
In practice

€ may require a lot of computational cost

€ many parameters that need to be tuned manually

@ cannot learn from past experience automatically

@ difficult to generalize well to unanticipated scenarios.
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Supervised learning based OA

@ require a massive manually labeled &S
dataset '

@ the performance of learned models
1s largely limited by the strategy of
generating training labels

(a) Giusti, Alessandro, et al. "A machine learning
approach to visual perception of forest trails for
mobile robots." IEEE Robotics and Automation
Letters 1.2 (2015): 661-667.

(b) Pfeiffer, Mark, et al. "From perception to
decision: A data-driven approach to end-to-end
motion planning for autonomous ground robots.”
ICRA-17.
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Supervised learning based OA

@ require a massive manually labeled B
dataset '

@ the performance of learned models
1s largely limited by the strategy of
generating training labels

However, deep reinforcement learning
(DRL) based methods learn from a
large number of trials and
corresponding feedback (rewards),
rather than from labeled data.

(b) ICRA-17



DRL-based Collision Avoidance
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DRL-based Collision Avoidance

[ Agent-level ]

[1] Chen, Yu Fan, et al. "Decentralized non-communicating multiagent collision
avoidance with deep reinforcement learning." ICRA 2017. |IEEE.

[2] Chen, Yu Fan, et al. "Socially aware motion planning with deep reinforcement
learning." IROS 2017.

[3] Everett, Michael, Yu Fan Chen, and Jonathan P. How. "Collision Avoidance in
Pedestrian-Rich Environments with Deep Reinforcement Learning." arXiv preprint
arXiv:1910.11689 (2019).
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DRL-based Collision Avoidance

[ Agent-level ]

@ requiring precise and complex front-end perception processing
modules

@ sensor type independence

@ can be adapted to different front-end perception modules

@ casy to design training simulation environment

@ casy transfer to the real environment
1
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DRL-based Collision Avoidance

[ Sensor-level J

[1] Long, Pinxin, et al. "Towards optimally decentralized multi-robot collision avoidance
via deep reinforcement learning." ICRA 2018. IEEE.

[2] Fan, Tingxiang, et al. "Distributed multi-robot collision avoidance via deep

reinforcement learning for navigation in complex scenarios." The International Journal
of Robotics Research (2020).
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DRL-based Collision Avoidance

[ Sensor-level J

@ do not require a complex and time-consuming front-end perception
module

@ only restricted to specific sensors
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Robot Navigation with Map-Based DRL

@ use the egocentric local grid map of a robot to represent the
environmental information around it

@ has the advantages of both agent-level and sensor-level methods

@ adaptable to various sensors, easy to be trained in simulation
environments, more robust to noisy sensor data, does not require
robots” movement data and a precise and complex front-end perception
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Robot Navigation with Map-Based DRL

MDP: M = (S,A,P,R,7)
The quality of policy m(als) can be evaluated by Q-value :

oo

Q" (s,a) = EI[Z YR(s;,a;)|so = s,a0 = d

=0
Q-learning algorithm

Q*(s¢,a;) = R(s¢,ar) + ymaxQ(s;41,ar+1)

At 41
DQN loss function: (y; — Q(s:,a1;0"))?
Iy if episode ends
Yt =3 ry + ymaxQ(s;+1,a;41;60") otherwise
ar+1

Double DQN
Ve = It + YO(5141,argmaxQ(s;41,a:41;0); QI)

ar+1 13



Robot Navigation with Map-Based DRL

» Observation
« grid maps
relative goal position

« current velocity
» Action

« angular velocity and linear velocity

 a set of allowable velocity in discrete
space
» Reward

re=(r8)+(r) + (),

Reward Shaping:

(8, = {rm,, if||p, — ]| < 0.2
"7 e(||p—i —gl|—|lp,—gll) otherwise
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Robot Navigation with Map-Based DRL

» Environment
« Gazebo simulator
« gradually increase the number of obstacles
« the distance from the starting point to the
target point gradually increases
» Training algorithm
« Dueling DDQN
« Prioritized experience reply
« Curriculum Learning

> Network
« a CNN-based deep convolutional neural
network
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Experiments -- simulation scenarios

® Expected return £, is the average of the sum of rewards of episodes.

® Arrival rate T is the ratio of the episodes in which the robot reaching the
goals within a certain step without any collisions over the total episodes.

® Arrival step § is the average number of steps required to successfully
reach the target point without any collisions

® Average angular velocity change vV @ is the average of the angular velocity
changes for each step, which reflects the smoothness of the trajectory.
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Experiments -- simulation scenarios

€ Comparative experiments

Method E, b 5 vV

PPO with 1d conv  467.87 0.85 40.19 046
Normal DQN 54743 091 27.76 0.39
Curricular DQN  617.04 094 26.13 0.35

€ Robustness to noise

Bl DON with noise Bl DON without noise B VFH

1.0

0.8 -

0.6 o

Reach rate

0.4

02 o

0.0 -

0.1 0.2
5td. Dev. of laser noise [m]




Experiments -- real-world

https://youtu.be/Eq4AjsFH cU

2d laser scanner > Differential wheel robot
' » Hokuyo UTM-30LX laser
~ > i7-8750H CPU, NVIDIA
1060 GPU
» 6.0x6.0m and resolution
0.1m local grid map

B Complex static environment built by cartons
B Dynamic pedestrian environment

B Long-distance open lobby environment

B Long-distance corridor environment



https://youtu.be/Eq4AjsFH_cU

CONCLUSIONS

€ A model-free deep reinforcement learning method for mobile
robot navigation with map-based obstacle avoidance, which
directly maps egocentric local grid maps to an agents steering
commands in terms of target position and movement velocity.

€ Based on dueling double DQN with prioritized experience reply,
and integrate curriculum learning techniques to further enhance
our performance.

€ Both qualitative and quantitative results show that the map-based
obstacle avoidance method outperforms other related DRL-based
methods in multiple indicators in simulation environments and is
easy to be deployed to a robotic platform.

€ Integrated our obstacle avoidance policy into the navigation
framework for long-range navigation testing.



Extended Work (nitps://cadsss.github.io/ )

Guangda Chen, Shunyi Yao et. al. Distributed Non-Communicating Multi-Robot
Collision Avoidance via Map-Based Deep Reinforcement Learning[J]. Sensors, 2020,
20(17): 4836

Youtube: https://youtu.be/KOb1g23L7-U Bili: https://www.bilibili.com/video/BV12f4y1Q7cx/
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