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Abstract: It is challenging to avoid obstacles safely and efficiently for multiple robots of different
shapes in distributed and communication-free scenarios, where robots do not communicate with each
other and only sense other robots’ positions and obstacles around them. Most existing multi-robot
collision avoidance systems either require communication between robots or require expensive
movement data of other robots, like velocities, accelerations and paths. In this paper, we propose a
map-based deep reinforcement learning approach for multi-robot collision avoidance in a distributed
and communication-free environment. We use the egocentric local grid map of a robot to represent the
environmental information around it including its shape and observable appearances of other robots
and obstacles, which can be easily generated by using multiple sensors or sensor fusion. Then we
apply the distributed proximal policy optimization (DPPO) algorithm to train a convolutional neural
network that directly maps three frames of egocentric local grid maps and the robot’s relative local
goal positions into low-level robot control commands. Compared to other methods, the map-based
approach is more robust to noisy sensor data, does not require robots’ movement data and considers
sizes and shapes of related robots, which make it to be more efficient and easier to be deployed to
real robots. We first train the neural network in a specified simulator of multiple mobile robots using
DPPO, where a multi-stage curriculum learning strategy for multiple scenarios is used to improve the
performance. Then we deploy the trained model to real robots to perform collision avoidance in their
navigation without tedious parameter tuning. We evaluate the approach with multiple scenarios both
in the simulator and on four differential-drive mobile robots in the real world. Both qualitative and
quantitative experiments show that our approach is efficient and outperforms existing DRL-based
approaches in many indicators. We also conduct ablation studies showing the positive effects of
using egocentric grid maps and multi-stage curriculum learning. The demonstration video can be
found at https://youtu.be/KOb1q23L7-U.

Keywords: multi-robot navigation; distributed collision avoidance; deep reinforcement learning

1. Introduction

With the rapid development of autonomous mobile robots in recent years, more and
more attentions have been paid to multi-robot collision avoidance, which is crucial in many
applications, such as multi-robot search and rescue [1], multi-robot intelligent warehouse
system [2], autonomous navigation through human crowds [3] and autonomous driving [4].
Multi-robot collision avoidance allows each robot to reach its target position from a starting
place while avoiding collisions with other robots and obstacles. The dynamic interactions
between diverse autonomous robots and the uncertainty in the environment make the
problem highly challenging.

Multi-robot collision avoidance methods can generally be classified into two cate-
gories: centralized methods and decentralized methods. A centralized method usually
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provides a center server to determine each robot’s action using an optimization algorithm
after collecting all the relevant information, which has been widely applied in many ap-
plications, such as task allocation [5], formation control [6] and object transportation [7,8].
These centralized methods assume that the actions of every robot are determined by a
central server with knowledge of every robots’ intents, like initial states and goals, and their
surrounding environments. Based on this knowledge, the central server would compute
collision avoidance actions by planning optimal paths for every robot simultaneously. Note
that centralized methods can generally guarantee safety, completeness and approximate
optimality. However, these methods are fragile and difficult to scale to systems with a
large number of robots, which is mainly due to the following reasons. Firstly, it becomes
more and more challenging for centralized control and scheduling when the number of
robots increases. Secondly, a reliable synchronized communication is required between the
central server and every robot, which is either uneconomical or not feasible for large-scale
systems. Thirdly, the centralized system is vulnerable to various failures, like disturbances
of the central server, communication between robots or robots’ motors and sensors. Fur-
thermore, these centralized methods are inapplicable when multiple robots are deployed
in an unknown and unstructured environment, especially in a human–robot coexisting
environment.

Different from the centralized method, a decentralized method allows each robot to
perform collision avoidance relying on its local perception of the surrounding environment,
which no longer requires a central server. Here, mobile robots would need to cooperate
without necessarily having knowledge of other robot’s intents. Decentralized methods
can be roughly divided into two groups, i.e., agent-level and sensor-level, on information
specified in each robot’s local perception. In particular, an agent-level method takes into
account positions and the movement data, like velocities, accelerations and paths, of other
robots. A sensor-level method uses the sensor data directly.

Existing work on agent-level decentralized collision avoidance can be further divided
into three categories, i.e., reaction-based, trajectory-based and learning-based. In particular,
a reaction-based agent-level decentralized method specifies one-step interaction rules
for the current geometric configuration. Velocity Obstacles (VO) [9] are widely used to
specify such geometric configurations, which require positions and velocities of other
robots to induce the VO for the selection of collision-free motion. Optimal reciprocal
collision avoidance (ORCA) [10] is one of the most successful VO-based approaches, which
guarantees collision-free trajectories except for densely packed conditions. Specifically,
ORCA provides a sufficient condition for multiple robots to avoid collisions with each
other in a short time horizon, and can easily be scaled to large systems with many robots.
ORCA and its variants [11,12] have been widely used in crowd simulation and multi-agent
systems. However, these methods use heuristics to construct parametric collision avoidance
models, which are tedious to be tuned for satisfactory performance. These methods also
require the perfect sensing of surrounding robots’ positions, velocities and shapes, which is
difficult to achieve in real-world applications. Extensions in [13–15] require communication
networks to share robots’ positions and velocities, which hurt the robustness and flexibility
of the system. By using a motion caption system as the global localization infrastructure,
Zhou et al. [16] only require positions of surrounding robots using their buffered Voronoi
cells. ORCA has also been extended to non-holonomic robots. ORCA-DD [17] doubles
the effective radius of each robot to ensure collision-free and smooth paths for robots
under differential constraints, which has troubles in narrow passages and unstructured
environments. NH-ORCA [18,19] enables a differential drive robot to follow the desired
speed command within an error, which only slightly increases the effective radius of a
robot and outperforms ORCA-DD in collision avoidance.

On the other hand, a trajectory-based agent-level decentralized method explicitly
evaluates the future joint states of robots by anticipating other robots’ future trajectories. A
subclass of non-cooperative methods [20,21] first estimates predicted paths of other robots,
then plans a collision-free path for the ego robot. However, these predicted paths usually
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mark a large portion of the space to be unsafe in crowded environments, which leads
to the freezing robot problem [22]. To overcome this problem, a subclass of cooperative
methods [23–26] was proposed to take into account the interactions between robots. A
cooperative trajectory-based method first infers other robots’ intents, computes jointly
feasible paths of all nearby robots, then chooses paths with better quality, e.g., shorter
time for every robot to reach their corresponding goals. However, it is hard to estimate
other robots’ intents and computationally expensive to generate paths for every robot.
Furthermore, the difference between the predicted path and the actual path of each robot
grows greater when the time increases, which requires a rapid update for the method.

Decentralized collision avoidance approaches discussed above may require extensive
computational efforts or a set of assumptions that may not be met in practice. These
approaches also involve a lot of parameters that need to be adjusted manually rather than
being able to learn automatically from past experience, which makes them harder to handle
unpredictable situations. Learning-based approaches try to optimize a parameterized
policy for collision avoidance from experiences in various environments. Deep neural
networks have been widely applied in the supervised learning paradigm to train a collision
avoidance policy that maps sensor input to the robot’s control commands to navigate a
robot in environments with static obstacles [27,28]. Giusti et al. [29] apply neural networks
to classify the input color images and determines actions that would keep the quadrotor
on the trail. To obtain the large number of training samples, some hikers were equipped
with three head-mounted cameras and were required to walk on the mountain path to
collect the data. Gandhi et al. [30] create one of the largest crash datasets for drones to
train unmanned aerial vehicles to fly. Tai et al. [31] propose a hierarchical structure that
combines the decision-making process with a convolutional neural network. Pfeiffer et
al. [32] propose a model that is capable to learn complex mappings directly from the 2D
laser range results to corresponding control commands of a mobile indoor robot. However,
these methods require a massive labeled dataset for the training and suffer from the
distribution mismatch between the training dataset and the testing environment, which
limits their applications in the real world. Some of them are just able to avoid simple static
obstacles in empty corridors.

On the other hand, deep reinforcement learning (DRL) approaches have achieved
significant success in many challenging tasks, such as Go game [33,34], video games [35,36]
and robotics [37,38]. In contrast, a DRL-based method is able to learn from a large number
of trials and corresponding feedbacks (rewards). In order to learn sophisticated control
strategies through DRL, the robot needs to interact with the training environment for a
long time to accumulate experience about the consequences of taking different actions in
different states. However, collecting such interactive data in the real world is very expen-
sive, time-consuming and sometimes impossible due to security issues [39]. Inspired by
VO-based approaches, Chen et al. [40] provide a DRL-based method to train an agent-level
collision avoidance policy, where the network still requires the expensive movement data
of the ego robot, its neighbors and moving obstacles as its inputs. In their extension [41],
multiple perception tasks, like segmentation, recognition and tracking, are performed on
multiple sensors to estimate the movement data of nearby robots and moving obstacles.
However, these perception tasks require extensive computational efforts for online utiliza-
tion. Notice that, though agent-level methods have the disadvantage of requiring a precise
and complex front-end perception procedure, they have the advantages of adaptable to
various sensors, easy to be trained in simulation environments and easy to be deployed to
a real robot.

To alleviate the disadvantage of the agent-level decentralized collision avoidance
methods, Long et al. [42] and Fan et al. [43] provide sensor-level decentralized collision
avoidance policies that directly map raw sensor data, i.e., 2D laser scan data, to robot’s
control commands. Notice that the difference between the laser data in a simulator and
the real world is limited. Then these collision avoidance policies can be trained in various
simulation environments and can later be deployed to robots in the real world. However,
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these methods are only restricted to specific sensors, i.e., 2D laser sensors. Moreover,
multiple sensors and their fusion are required for mobile robots to navigate autonomously
and safely [44]. For instance, a 2D laser sensor has troubles to handle 3D collision avoidance
in an office-like environment, where an RGB-D camera, like Kinect, can be helpful.

In this paper, we propose a decentralized map-based DRL approach for multi-robot
collision avoidance in a distributed and communication-free environment. Compared
to agent-level [41] and sensor-level [43] methods, we use the egocentric local grid map
of a robot to represent the environmental information around it including its shape and
observable appearances of other robots and obstacles, which can be easily generated by
using multiple sensors or sensor fusion. Then we apply the distributed proximal policy
optimization (DPPO) algorithm to train a convolutional neural network that directly maps
three frames of egocentric local grid maps and the robot’s relative local goal positions into
low-level robot control commands. Our map-based method has the advantages of both
agent-level and sensor-level methods, the map-based approach is adaptable to various
sensors, easy to be trained in simulation environments, more robust to noisy sensor data,
does not require robots’ movement data and a precise and complex front-end perception
procedure, and considers sizes and shapes of related robots, which make it to be more
efficient, robust and easier to be deployed to real robots. We first train the neural network in
a specified simulator of multiple mobile robots using DPPO, where a two-stage curriculum
learning strategy for two scenarios is used to improve the performance. Then we deploy
the trained model to real robots to perform collision avoidance in their navigation without
tedious parameter tuning. We evaluate the approach with multiple scenarios both in the
simulator and on four differential-drive mobile robots in the real world. Both qualitative
and quantitative experiments show that our approach is efficient and outperforms existing
DRL-based approaches in many indicators. We also conduct ablation studies showing the
positive effects of using egocentric grid maps and multi-stage curriculum learning.

Our main contributions are summarized as follow:

• We propose a map-based DRL multi-robot collision avoidance approach in a commu-
nication free environment, where egocentric local grid maps are used to represent the
environmental information around the robot, which can be easily generated by using
multiple sensors or sensor fusion.

• We train the collision avoidance policy in multiple simulation environments using
DPPO, which can be deployed to real robots without tedious parameter tuning, where
the network considers egocentric local grid maps as inputs and directly outputs
low-level robot control commands.

• We evaluate our approach with multiple scenarios both in the simulator and on many
differential-drive mobile robots in the real world. Both qualitative and quantitative
experiments show that our approach is efficient and outperforms existing related
approaches in many indicators.

• We conduct ablation studies that specify the positive effects of using egocentric grid
maps and multi-stage curriculum learning.

The rest of this paper is organized as follows. The formulation of multi-robot collision
avoidance is presented in Section 2. The applied DRL algorithm for multi-robot collision
avoidance based on egocentric local grid maps is described in Sections 3. Section 4 and
Section 5 describe the simulation experimental results and the real-world experiments
respectively, followed by conclusions in Section 6.

2. Problem Formulation

Multi-robot collision avoidance requires a group of N mobile robots with holonomic
or non-holonomic constraints to perform corresponding trajectories to their target places
while avoiding collisions with each other and with obstacles in their environment.

In particular, at each time step t, each robot i (0 ≤ i ≤ N − 1) first receives its sensing
data ci

t, the offset orientation angle αi
t relative to its starting pose and a local goal position

gi
t in its coordinate system, which contains robot i’s relative position in a path that is



Sensors 2020, 20, 4836 5 of 32

generated by its global planner to reach its target. Then the robot chooses an action ai
t

to move towards its local goal gi
t. Note that sensing data ci

t does not need to have full
observation of the environment. Then without assuming perfect sensing, we only need
a partial observation here. On the other hand, as discussed in Section 1, we also do not
directly apply raw sensor data as inputs of our collision avoidance policy. Instead, we use
the egocentric local grid map Mi

t to represent the environmental information around the
robot i including its shape Ωi and the sensing result ci

t. In specific, we consider

Mi
t = fλ( ci

t, Ωi ),

where fλ denotes the grid map generator specified by parameters λ to generate the egocen-
tric local grid map Mi

t from the robot’s shape Ωi and the sensing result ci
t.

Note that intents and movement data of other robots are not required here. However,
we can estimate motion information, i.e., velocities, accelerations and paths, of other robots
implicitly from consecutive frames of egocentric local grid maps. We can also estimate ego
robot’s historical trajectory and velocities, i.e., linear velocities and angular velocities, from
consecutive frames of its local goals and offset orientation angles. In particular, we specify
the observation of the robot i at time t as oi

t =
(

Mi
t, gi

t, αi
t
)
. We can use m ≥ 1 consecutive

frames of such observation states as inputs of the collision avoidance policy πθ . In specific,
we consider

ai
t = πθ( oi

t−m+1, . . . , oi
t ),

where πθ denotes the collision avoidance policy specified by parameters θ to choose an
action ai

t based on m consecutive frames of the observation. In this paper, we denote action
ai

t = (vi
t, ωi

t), where vi
t is the linear velocity and ωi

t is the angular velocity that the robot i
needs to perform until the next time step t + 1.

In multi-robot collision avoidance, each robot i moves from the starting position pi
0

to the target position pi
g, while avoiding collisions with each other and with obstacles Bk

(1 ≤ k ≤ M), i.e., observable appearances of the obstacles, in the environment. In addition,
Bk can be considered as a set of cells that are occupied by the corresponding obstacle in the
gird map and with a slight abuse of notation, Ωi(pi

t) denotes a set of cells that are occupied
by the robot i at the position pi

t at time t with the shape Ωi. We intend to minimize the
expectation of the arrival time ti

g for every robot 0 ≤ i ≤ N − 1 under the constraint that
no collision occurs with other robots and obstacles. In specific,

arg min
θ

E[
N−1

∑
i=0

ti
g | πθ ],

s.t. for each 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1, i 6= j, and 1 ≤ k ≤ M,

pi
t+1 = pi

t +∆t ·πθ(oi
t−m+1, . . . , oi

t), pi
ti
g
= pi

g, Ωi(pi
t)∩Ωj(pj

t) = ∅, and Ωi(pi
t)∩Bk = ∅.

Notice that the second line of conditions requires each robot to reach its target without
collision. In the following, we introduce our approach towards the intent.

3. Approach

We begin this section by describing the key ingredients of the distributed proximal
policy optimization (DPPO) reinforcement learning algorithm for multiple robots. Then, we
describe the details on the network architecture and the training process for the multi-robot
collision avoidance policy. Finally, we elaborate on the training protocols and scenarios
used to optimize the policy.

3.1. Reinforcement Learning Components

As discussed in Section 2, our formulation of the multi-robot collision avoidance
problem can be considered as a partially observable decision-making problem under
uncertainty, which can be specified as a Partially Observable Markov Decision Process
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(a) A simulation environment (b) A local view of a robot (c) An egocentric grid map

Figure 1. (a) A training environment of the simulator, where blue digital circles represent the target
positions of robots with the corresponding number, red lines specify the straight paths from the
current position to the target for robots and other black pixels represent various obstacles. (b) The
local view of the environment for the robot 0. (c) The egocentric local grid map generated from the
local view using a 2D laser sensor.

(POMDP) problem [45] and solved using reinforcement learning algorithms. In specific,
a POMDP problem consists of 6 tuples 〈S, A, P, R, Ω, O〉, where S is the state space, A is
the action space, P is the transition function that describes the probability of transiting to
the next state, R is the reward function that illustrates the immediate state-action reward
signal, Ω is the observation space with o ∈ Ω and O is the observation probability function
that describes the probability of observing o.

In the following, we describe the details of our map-based approach for multi-robot
collision avoidance, including the observation space, the action space and the reward
function.

3.1.1. Observation Space

As specified in Section 2, the observation oi
t consists of the generated grid map Mi

t,
the relative local goal position gi

t and the offset orientation angle αi
t for the corresponding

robot i. We use the latest three frames of observations~oi
t = (oi

t−2, oi
t−1, oi

t) as inputs of
the neural network for the collision avoidance policy. In this paper, the egocentric local
grid map Mi

t is generated by a 2D laser scan with 180 degrees horizontal Field of View
(FOV), which encodes robot i’s shape and observable appearances of nearby obstacles and
other robots. Note that egocentric local grid maps are directly constructed from costmaps1

in robotics, which can be easily generated by using various sensors or sensor fusion. The
relative local goal position gi

t is a two-dimensional vector representing a position (x, y)
w.r.t. the current position of the robot i, which specifies a position in the path that is
generated by the global planner to reach robot i’s final target in the environment. The angle
αi

t represents the change of the robot i’s orientation relative to its starting pose. Notice that
motion information of other robots can be implicitly extracted from consecutive frames
of egocentric local grid maps, and the historical trajectory and velocities of ego robot can
be implicitly extracted from consecutive frames of its local goals and offset orientation
angles. There is a trade-off between the accuracy of the estimation and the efficiency of
the policy. In our experiments, satisfactory performance is achieved when three frames of
observations are considered as inputs of the network.

Egocentric local grid maps are constructed from costmaps, which have been widely
applied in robot navigation [46,47] and can be generated from various sensors or sensor
fusion with strong noise resistance. We first receive a local costmap w.r.t. the robot i, then
we can construct the egocentric local grid map Mt

i by adding the robot’s configuration,
i.e., its size and shape, in the costmap. There is a value in each cell of Mi

t to represent the
surrounding environment. In particular, cells of value 0 denote the obstacles and other

1 http://wiki.ros.org/costmap_2d

http://wiki.ros.org/costmap_2d
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robots around the robot. Cells of value 255 denote the free space, cells of value 100 denote
the undetected place that is unknown for the robot and cells of value 200 denote the place
that is occupied by the robot itself. An example of the training environment in the simulator
is illustrated in Figure 1(a). The generated egocentric local grid map for the robot 0 in this
example is shown in Figure 1(c).

In this paper, we convert the egocentric local grid map to a gray image, where values
of pixels are divided by 255 for normalization, to ease the set up of the network. Without
loss of generality, we identity a grid map with its corresponding gray image in the paper.

3.1.2. Action Space

The action space of robots is a set of permissible velocities in continuous space. The
action ai

t of a differential robot i consists of a linear velocity vi
t and an angular velocity ωi

t, i.e.,
ai

t = (vi
t, ωi

t). In this paper, we set vi
t ∈ [0, 0.6] (in meters per second) and ωi

t ∈ [−0.9, 0.9]
(in radians per second), which can be directly performed by the differential robots used in
our experiments. Note that vi

t ≥ 0, i.e., moving backward is not allowed, due to lack of
rear sensors.

3.1.3. Reward Function

The goal of the agent is to maximize its cumulative reward in reinforcement learning
and the reward function specifies what the agent needs to achieve but not how to achieve it.
In our long-distance multi-robot collision avoidance task, the objective is to minimize the
mean arrival time for each robot arriving its local goal under the collision-free constraint,
where the reward signal is often weak and sparse unless the local goal has been reached
or a collision has occurred. To alleviate this problem, we apply the reward shaping
technique [48] by adding an extra reward signal rg

t to guide the robot to move towards its
local goal.

Each robot has the same reward function in our setting. We use rt to denote the reward
received by the robot at time t. We use the following reward function in this paper,

rt = rg
t + ra

t + rc
t + rs

t .

Note that rt is the sum of four parts, rg
t , ra

t , rc
t and rs

t .
In particular, rg

t specifies the penalty when the robot goes far of its local goal. We
define rg

t as:
rg

t = η(
∥∥pt−1 − pg

∥∥− ∥∥pt − pg
∥∥ ),

where pt is the position of the robot at time t, pg is the position of the local goal and η is
the hyper-parameter that controls the penalty amount.

ra
t denotes the reward when the robot arrives its local goal, i.e., the distance between

the robot and its local goal is less than darr, where rarr > 0 is the consistent reward.

ra
t =

{
rarr if ‖pt − pg‖ < darr,
0 otherwise.

rc
t specifies the penalty when the robot encounters a collision. Note that DPPO

considers stochastic policies, we add a penalty when the robot gets closer to obstacles or
other robots. We define rc

t as:

rc
t =

{
rcol if collision,
0 otherwise,

where rcol < 0 is the consistent penalty for the collision.
At last, we apply a small negative penalty for each time step, i.e., rs

t < 0, to encourage
short paths. In this work, we set rarr = 500, η = 200, rcol = −500 and rs

t = −5 in the training
procedure.
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3.2. Distributed Proximal Policy Optimization

In the POMDP setting, multi-robot collision avoidance requires a stochastic policy
πθ(ai

t | ~oi
t) for each robot i, which specifies the probability of mapping the latest three

frames of observations ~oi
t, i.e., (oi

t−2, oi
t−1, oi

t), to an action ai
t at time t. Note that every

robot shares the same stochastic policy in our work. Then without loss of generality, we
omit the subscript i in the following.

In DRL, policy gradient methods optimize a stochastic policy πθ by maximizing the
expected return J(πθ) using stochastic gradient ascent. In specific,

∇θ J(πθ) = ∇θ E
τ∼πθ

[R(τ)],

θk+1 = θk + α∇θ J
(
πθk

)
,

where τ is a trajectory, R(τ) is the finite-horizon discounted return (R(τ) = ∑∞
t=0 γtrt,

where γ ∈ (0, 1) is a discount factor), The gradient of policy performance, ∇θ J(πθ),
is called the policy gradient and α is the learning rate. By introducing the trajectory
probability P(τ|θ) and using mathematical techniques [49], we can further derive the
following analytical gradient from the above equation,

∇θ J(πθ) = E
τ∼πθ

[∇θ log P(τ|θ)R(τ)]

= E
τ∼πθ

[
T

∑
t=0
∇θ log πθ(at |~ot)R(τ)

]
.

Generally, we do not need to describe the absolute meaning of an action, but only need
to describe how much better it is on average than other actions. In other words, we need
to know the advantage of the action. Therefore, we define Âπθ as an estimator of the
advantage function for the policy πθ , and the above equation is further rewritten as

∇θ J(πθ) = E
τ∼πθ

[
T

∑
t=0
∇θ log πθ(at |~ot)Âπθ (~ot, at)

]
.

While it is appealing to perform multiple steps of optimization on J(πθ) using the
same trajectory, which is not well-justified and empirically often leads to destructively
large policy updates. Proximal Policy Optimization (PPO) [50] addresses this problem
by introducing importance sampling and using the clip method to restrict the size of the
policy update. In specific, PPO with clip loose updates policies via

θk+1 = arg max
θ

E~o,a∼πθk
[L(~o, a, θk, θ)], (1)

and L is defined as

L(~o, a, θk, θ) = min
(

πθ(a |~o)
πθk (a |~o)

Âπθk (~o, a), g
(
ε, Âπθk (~o, a)

))
, (2)

g(ε, Â) =

{
(1 + ε)Â Â ≥ 0,
(1− ε)Â Â < 0,

where ε is the clip function ration.
A variance-reduced advantage-function estimator Âπθ (~ot, at) can be constructed using

a learned state-value function Vφ(~ot). In particular, we use a truncated version of the
generalized advantage estimation (GAE) [51] for a given length-T trajectory segment, i.e.,

Âπθ (~ot, at) = δt + (γλ)δt+1 + · · ·+ (γλ)T−1−tδT−1, (3)

where δt = rt + γVφ(~ot+1)−Vφ(~ot), Vφ represents the state-value function, the discount
factor 0 ≤ γ < 1 and the parameter 0 ≤ λ ≤ 1.
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In this paper, we apply the distributed Proximal Policy Optimization (DPPO) algo-
rithm to train the stochastic policy for multi-robot collision avoidance. DPPO is extended
from PPO by collecting experiences in a distributed setting from a variety of environments
where multiple robots share the same policy πθ to take actions interactively. Then these
collected experiences are used to update the parameters of the policy πθ and the state-value
function Vφ.

In the following, we introduce details of our DPPO algorithm, including the training
process, the network architecture and the usage of multi-stage curriculum learning.

3.2.1. Training Process

We implement our DPPO algorithm through the centralized learning decentralized
execution paradigm, in which homogeneous learning agents sample simultaneously from
multiple simulation environments to train the same shared neural network that represents
their collision avoidance policy. Algorithm 1 specifies the training process that samples
trajectories by executing the policy in parallel and updates the policy with the sampled
data. The policy πθ is trained with these collected experiences by all robots simultaneously.
Every robot exploits the same policy to generate trajectories in corresponding environments.
An episode for robots running in an environment is terminated, when every robot reaches
its target or encounters a collision with an obstacle or another robot. Then the environment
is also reset. In specific, each robot i receives its own inputs~oi

t, i.e., the latest three frames of
observations, at each time step t and executes the action ai

t generated from the shared policy
πθ in multiple environments and then gets a return ri

t and a new state observation~oi
t+1, we

store the (~oi
t, ai

t, ri
t, Vi

t ) in the buffer queue (ll. 7-11). When the buffer queue is full or the
trajectory length reaches the maximum trajectory length limit Tm in the episode, we need
to set Vi

t+1 = Vφ(~oi
t+1) to forcefully cut the trajectory to end the episode (ll. 12-13). When

the robot reaches the target point (‖pi
t − pi

g‖ < darr), or collides with other obstacles (there
exists some 1 ≤ k ≤ M, s.t., Ωi(pi

t) ∩ Bk 6= ∅), or collides with other robots (there exists
some 0 ≤ j ≤ N − 1, s.t., i 6= j and Ωi(pi

t) ∩Ωj(pj
t) 6= ∅), we set Vi

t+1 = 0 to finish the
episode (ll. 14-15). When the episodes of all robots have finished, we estimate advantages
of each step stored in the buffer, and save it to the corresponding position in the buffer, and
then reset the simulation environment (ll. 18-22).

The policy network for the stochastic policy πθ and the value network for the state-
value function Vφ are updated when the collected experiences have filled the entire expe-
rience buffer. To update the policy πθ , the surrogate loss LPPO(θ) in Algorithm 1 is con-
structed from the collected trajectories, which is optimized using the Adam optimizer [52]
for Eπ epochs under the Kullback–Leiber (KL) divergence constraint (ll. 26-32). To update
the state-value function Vφ, i.e., the baseline to estimate the advantage function Ât, the loss
squared-error LV(φ) in Algorithm 1 is also constructed from these collected trajectories,
which is also optimized using the Adam optimizer for EV epochs (ll. 34-37). Finally, we
clear the buffer and recollect the experience used for training (l. 38). The value network has
the same architecture as the policy network, except the last layer is modified to only output
the value of~ot, i.e., one unit with a linear activation. Note that both the policy network
and the value network are updated independently and their parameters are not shared,
which due to the fact that using two separate networks often leads to better performance
in practice.

The DPPO algorithm in Algorithm 1 can be easily scaled to a multi-robot system with
a hundred robots in distributed and communication-free scenarios. We also illustrate such
scenarios in our experiments, where each robot is independent to collect its experiences.
Note that the decentralized execution not only dramatically reduces the time of sample
collection, but also makes the algorithm suitable for training many robots in multiple
scenarios.
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Algorithm 1: Distributed Proximal Policy Optimization

1 Initialize the policy network for πθ and the state network for Vφ.
2 Clear the experience buffer Buffer.
3 for epoch = 1, . . . , E do
4 // Collect data in parallel
5 for step t = 1, . . . , Tep do
6 for robot i = 0, . . . , N − 1 do
7 ai

t = πθ(~oi
t)

8 Vi
t = Vφ(~oi

t)

9 ~oi
t+1, ri

t = step(ai
t)

10 Add (~oi
t, ai

t, ri
t, Vi

t ) to Buffer
11 ~oi

t ←~oi
t+1

12 if Buffer is full or trajectory length > Tm then
13 Cut trajectory by Vi

t+1 = Vφ(~oi
t+1).

14 else if ‖pi
t − pi

g‖ < darr or there exists some 1 ≤ k ≤ M, s.t.,
Ωi(pi

t) ∩ Bk 6= ∅ or there exists some 0 ≤ j ≤ N − 1, s.t., i 6= j and
Ωi(pi

t) ∩Ωj(pj
t) 6= ∅ then

15 Finish episode by Vi
t+1 = 0.

16 end
17 end
18 if all robots have finished then
19 Estimate advantages using GAE in Equation (3), i.e.,

Ât = ∑T−1
l=t (γλ)l−tδl , where δl = rl + γvl+1 − vl .

20 Add Ât to Buffer
21 ~ot = reset()
22 end
23 end
24 πθold ← πθ

25 // Update policy network
26 for m = 1, . . . , Eπ do
27 Compute LPPO(θ) by Equation (2), i.e.,

LPPO(θ) = ∑
Tep
t=1 min

(
πθ(at |~ot)

πθold(at |~ot)
Ât, g(ε, Ât)

)
, where

g(ε, Â) =

{
(1 + ε)Â Â ≥ 0,
(1− ε)Â Â < 0,

28 if KL[πθold | πθ ] > 1.5KLtarget then
29 break
30 end
31 Update θ with the learning rate lrθ using Adam w.r.t. LPPO(θ) by

Equation (1).
32 end
33 // Update value function
34 for n = 1, . . . , EV do

35 LV(φ) = −∑
Tep
t=1 (∑t′>t γt′−trt′ −Vφ(~ot))

2

36 Update φ with the learning rate lrφ using Adam w.r.t. LV(φ).
37 end
38 Clear Buffer
39 end
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Figure 2. The architecture of the policy network. The input of the network is ~ot, which consists
of three frames of egocentric local grid maps and three frames of local goal positions and offset
orientation angles. The network computes the mean of the action, which consists of a linear velocity
and an angular velocity. The resulting action is sample from a Gaussian distribution.

3.2.2. Network Architecture

The architecture of our policy network for the collision avoidance policy πθ is shown
in Figure 2. As introduced in Section 3.1.1,~ot is considered as the input of the network,
which consists of three parts, i.e., (Mt−2, Mt−1, Mt), three consecutive frames of egocentric
local grid maps, (gt−2, gt−1, gt), three consecutive frames of relative local goal positions
and (αt−2, αt−1, αt), three consecutive frames of offset orientation angles.

The network first produces feature maps for grid maps, i.e., (Mt−2, Mt−1, Mt), using
three convolutional layers LCV and three max pooling layers LMP. The output value of the
2D convolutional layer LCV with input size (N, Cl−1, Hl−1, W l−1) and output (N, Cl , Hl , W l)
can be precisely described as:

xl(Ni, Cl
j) = ReLU(

Cl−1−1

∑
k=0

Wl(Cl
j , k) ? xl−1(Ni, k) + bl(Cl

j)),

where ReLU(x) = max(0, x) denotes the rectified linear unit function [53], ? is the valid
2D cross-correlation operator, xl is the output tensor of the network layer l, N is a batch
size, C denotes a number of channels, H is a height of input planes in pixels and W
is width in pixels. The output value of the 2D max pooling layer LMP with input size
(N, C, Hl−1, W l−1), output size (N, C, Hl , W l) and kernel size (kH, kW) can be precisely
described as:

xl(Ni, Cj, h, w) =
kH−1
max
m=0

kW−1
max
n=0

xl−1(Ni, Cj, s0 × h + m, s1 × w + n), m, n ∈ N,

where (s0, s1) represents the stride of the window to take a max over, h ∈ [0, Hl ] and
w ∈ [0, W l ]. The first 2D convolutional layer LCV

0 convolves 64 two-dimensional filters
(Conv2D) with kernel 3 × 3 and stride 1 over the three grid maps, and applies ReLU
nonlinearities followed by a max-pooling layer LMP

0 with kernel 2× 2 and stride 2. The
second layer LCV

1 convolves 128 two-dimensional filters with kernel 3× 3 and stride 1,
and again followed by a max-pooling layer LMP

1 with kernel 2× 2 and stride 2, The third
layer LCV

2 convolves 256 two-dimensional filters with kernel 3× 3 and stride 1, and again
followed by a max-pooling layer LMP

2 with kernel 2× 2 and stride 2. Then these feature
maps are converted to a 512 dimensional vector by a fully-connected layer LFC

0 with 512
units. The fully-connected layer LFC applies a linear transformation to the incoming data
xl−1:

xl = ReLU(Wlxl−1 + bl).

The network also projects three frames of local goals and offset orientation angles, i.e.,
(gt−2, gt−1, gt) and (αt−2, αt−1, αt), to a 9 dimensional vector. The network combines both
vectors and feeds them to two fully-connected layers LFC

1 and LFC
2 with 512 units. Then the
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(a) Random scenario (b) Circular scenario

Figure 3. Two scenarios used to collect collision avoidance experiences for multiple robots, where the
blue digital circles represent the target goals of the robot with the corresponding number, red lines
specify the straight paths from the current position to the target for robots and other black pixels
represent various obstacles. Blue boxes on the right illustrate egocentric local grid maps of each
robot.

network applies a fully-connect layer LFC
3 with 2 units without activations to produce the

output, i.e., the mean of the action amean
t = (vmean

t , ωmean
t ), where vmean

t is the mean of the
linear velocity and ωmean

t is the mean of the angular velocity. The entire policy network πθ

can be expressed as follows:

amean
t =

3

∏
k=1

LFC
k (LFC

0 (
2

∏
l=0

LMP
l · LCV

l (~Mt))⊕~gt ⊕~αt),

where ⊕ is the concatenation operator. At last, the output of the network, i.e., the resulting
action, is sampled from the Gaussian distribution N (amean

t , alogstd
t ), where alogstd

t is a sepa-
rate set of parameters referring to a log standard deviation, which will be updated during
the training process. We also use a clip function to ensure that the resulting actions are
valid in the action space.

The value network has the same architecture as the policy network, except the last
layer is modified to only output the value Vφ(~Mt,~gt,~αt).

3.2.3. Multi-stage Curriculum Learning

Curriculum learning [54] aims to improve learning performance by designing ap-
propriate curriculums for progressive learners from simple to difficult. Elman et al. [55]
put forward the idea that a curriculum of progressively harder tasks could significantly
accelerate a neural network’s training. Curriculum learning has recently become prevalent
in the machine learning field, which assumes that the curriculum learning can improve the
convergence speed of the training process and find a better local minimum value than the
existing solvers. The formal expression of this idea can be found in [54]. The corresponding
training distribution at step λ is

Qλ(z) ∝ Wλ(z)P(z) ∀z,

where z is a random variable representing an example for the learner, P(z) represents
the target training distribution, Wλ(z) ∈ [0, 1] is the weight applied to example z at step
λ ∈ [0, 1] in the curriculum sequence, and W1(z) = 1. The sequence of distributions Qλ is
called a curriculum if the entropy of these distributions increases

H(Qλ) < H(Qλ+ξ) ∀ξ > 0,
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Figure 4. (a) Comparison of the expected return shown in epochs for the training process with two-stage curriculum
learning and the training process without two-stage curriculum learning, i.e., from scratch. (b) Comparison of the expected
return shown in epochs for the training process using Map-based policy and the training process using sensor-level policy.

and Wλ(z) is monotonically increasing in λ,

Wλ+ξ(z) > Wλ(z) ∀z, ∀ξ > 0.

Increasing entropy means more diversity of training examples, and we want the weights
of specific examples to increase as they are "added" to the training set. The curriculum
strategy can be completed in two steps in the usual tasks: first a set of simple examples,
and then the target training set.

In this paper, we introduce a two-stage training process for curriculum learning.
Specifically, we propose two scenarios, i.e., the random scenario and the circular scenario,
that generate random environments in our customized simulator (as illustrated in Figure
3) to collect collision avoidance experiences for multiple robots. Figure 3(a) illustrates
environments that randomly choose locations for obstacles, the starting and target positions
of robots, which would help the robot to be able to avoid obstacles, a.k.a., random scenario.
Environments in the random scenario are constructed in a 6× 6 m2 space with eight robots
and four obstacles, where the target position of each robot is randomly generated within
the range of 2 m to 4 m from its starting point. Figure 3(b) illustrates environments that
randomly place robots on a circle with a random radius, a.k.a., circular scenario, which
helps the robot to be able to interact with other robots. Environments in the circular
scenario randomly place eight robots on a circle with a varying radius in the range of
1.8 m to 3.0 m. These rich and complex training environments enable robots to explore
their high-dimensional observation space and improve the quality and robustness of the
learned policy. Combining with the centralized learning and the decentralized execution
mechanism, the collision avoidance policy is effectively optimized at each iteration over
these environments.

Following the idea of curriculum learning, we decompose our train process into two
stages. In the first stage, we train the policy in environments of the random scenario
(illustrated in Figure 3(a)) with eight robots and four obstacles. This allows robots to find a
policy to avoid obstacles quickly. Once the policy has achieved an acceptable performance,
we fix the trained policy and move to the second stage. In the second state, we continue
to train the policy in environments of both the random scenario and circular scenario
(illustrated in Figure 3(b)), where the number of robots is increased to 16.

Figure 4(a) shows the learning curve for an ablation study to illustrate the effect
of two-stage curriculum learning, where “Stage-1” denotes the expected return for the
training process in the first stage, “Stage-2” denotes the expected return for the training
process in the second stage, and “From scratch” denotes the expected return for the training
process without using two-stage curriculum learning. Note that two-stage curriculum
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Table 1. Hyper-parameters of the NH-ORCA algorithm used in our comparison experiments.

Parameter Value

VO type HRVO
Use ORCA True
Use clearpath True
Epsilon 0.1
Time horizon 10
Time to holonomic 0.4
Minimum tracking error 0.02
Maximum tracking error 0.1

learning helps the policy to converge with a higher expected return, i.e., a better collision
avoidance performance.

4. Simulation Experiments

In this section, we evaluate our map-based multi-robot obstacle avoidance approach
in various simulations environments. We first specify details of our implementation
including the customized simulator, hyper-parameters, hardware and software for training
the networks. Then, we quantitatively evaluate the performance of our map-based multi-
robot navigation policy in various simulation scenarios and compare it with other existing
approaches. For the specific performance of the robots in the experiments, please refer to
the demonstration video at https://youtu.be/KOb1q23L7-U.

In the experiments, we implement three different approaches to generate correspond-
ing multi-robot obstacle avoidance policies and compare them in multiple scenarios to
evaluate the performance of these approaches. In specific, we consider the following
policies:

• NH-ORCA policy: the policy generated by the state-of-the-art rule-based agent-level
multi-robot collision avoidance approach proposed by Alonso-Mora et al. [18,19].
Hyper-parameters of the NH-ORCA algorithm used in our comparison experiments
are listed in Table 1. For the details of definition of each parameter, please refer to [14].

• Sensor-level policy: the policy generated by the DRL based approach proposed by Long
et al. [42] and Fan et al. [43]. Different from our approach, their network considers the
original 2D laser data (in a 1D form) as the input and uses 1D convolutions to handle
the input. For a fair comparison, we trained this DRL-based approach in the same
training process, i.e., the two-stage training process, as our approach. The learning
curve of its training process is shown in Figure 4(b), where we denote their approach as
“Sensor-level” and our approach as “Map-based”. Note that our approach converges
with a higher expected return in the training process.

• Map-based policy: the policy generated by our approach in this article, which considers
egocentric local grid maps as inputs.

To further evaluate the efforts of the two-stage curriculum learning in our approach, we
specify the collision avoidance policy trained after the first training stage as “Map-based
Stage-1” and the policy trained after the second stage as “Map-based Stage-2”.

We compare above collision avoidance policies from different perspectives, including
the generalization to unseen scenarios, the efficiency for navigation and the robustness
to the agent density and to the robots’ various shapes and dynamics. These experiments
show that our map-based approach outperforms others in many indicators.

4.1. Reinforcement Learning Setup

We trained our Map-based agent following the DPPO algorithm in Algorithm 1 with
the hyper-parameters listed in Table 2.

https://youtu.be/KOb1q23L7-U
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Table 2. Hyper-parameters of our training algorithm described in Algorithm 1.

Parameter Value

Tep in line 5 2000
Tm in line 12 200
darr in line 14 0.2
λ in line 19 0.95
γ in line 19 and 35 0.99
Eπ in line 26 80
ε in line 27 0.2
KLtarget in line 28 0.01
lrθ in line 31 3.0× 10−4 (Stage 1), 1.0× 10−4 (Stage 2)
Ev in line 34 80
lrφ in line 36 1.0× 10−3

4.2. Implementation Details

Unlike our previous work [56] and most other related work that uses Gazebo [57] or
Stage [58] as the simulator, our training environments are constructed by a customized
simulator based on OpenCV2. In specific, the simulator can load a map of the environment
as a gray image, where obstacles and robots are denoted as corresponding pixels in the
image. Moreover, collisions can be identified as the coinciding of these pixels. Different
from other simulators, like Gazebo, this customized simulator is efficient and flexible with
lower communication delays.

We also implement differential drive robots in the simulator, whose pose (x, y, θ) is
updated according to the velocity motion model of differential wheels:x′

y′

θ′

 =

x
y
θ

+

− v
ω sinθ + v

ω sin(θ + ω∆t)
v
ω cosθ − v

ω cos(θ + ω∆t)
ω∆t

,

where ∆t is the interval time of velocity control, v and ω denote the linear velocity and the
angular velocity, respectively. At each time step t, we intercept the world map according
to the last pose of the robot i to generate the draft of the egocentric grid map M̄i

t. Then,
we estimate the resulting egocentric local grid map Mi

t from a laser scanner using the
Bresenham’s line algorithm [59]. Note that we do not add any noise in environments
constructed by the simulator in the training process, which helps us to optimize the policy
with low variance.

Both the policy network and the value network are implemented in TensorFlow3

and trained with the Adam optimizer [52]. A computer with an i7-9900 CPU and an
Nvidia Titan RTX GPU is used for the training. It takes around 12 hours to run about 900
iterations in Algorithm 1 to train the networks for converging in all the training scenarios.
As specified in Table 2, the learning rate lrθ of the policy network is set to 3× 10−4 in the
first training stage and is then reduced to 1× 10−4 in the second training stage.

The learning policy can be executed online on robots in both the simulation and the
real world in real-time. In the simulation, it takes 2 ms on the GPU for the policy network
to compute new actions for 8 robots. After deploying the policy to robots in the real work,
it takes about 25 ms on an Nvidia Jetson TX2 for policy network to compute new actions
and takes about 30 ms to generate egocentric local grid maps from the 2D laser scanning
data.

2 https://opencv.org/
3 https://www.tensorflow.org/

https://opencv.org/
https://www.tensorflow.org/
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Figure 5. The scenario with non-cooperative robots, where eight robots are controlled by the learned
policy to interact with a non-cooperative robot. The non-cooperative robot (with the yellow color)
moves along a straight line at a speed of 0.5 m/s, robots represented by other colors are controlled by
the same learned collision avoidance policy.

(a) (b)

Figure 6. (a) The large-scale scenario extends from the circular scenario, which uniformly places
80 robots on a large circle and asks them to move to their antipodal positions. The blue points
denote robots’ target positions. (b) The large-scale scenario extends from the random scenario, which
randomly places 200 robots and 200 obstacles with different sizes in an area with 60× 60 m2 and
asks them to move to random-choosing target positions within the range of 4.5 m to 5 m relative to
corresponding starting positions. The blue points also denote robots’ target positions.

4.3. Generalization Capability

Notice that we only use environments from the random scenario and the circular
scenario to train the networks for multi-robot collision avoidance in our map-based DPPO
approach. We demonstrate the generalization of our approach by showing that the learned
policy performs well to a series of unseen scenarios and also performs well for heteroge-
neous robots after introducing robots with different sizes and shapes in the training.

4.3.1. Non-cooperative Robots

Here we introduce a scenario that contains a non-cooperative robot, i.e., a moving
robot that can not be affected by other robots. Figure 5 illustrates three environments of the
scenario, where eight robots are deployed with the collision avoidance policy generated by
our approach, and the robot with the yellow color moves along a straight line at a speed of
0.5 m/s.
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Figure 7. The scenario with heterogeneous robots, which contains three rectangular robots, three
circular robots and obstacles with different shapes. All robots are controlled by the same learned
collision avoidance policy.

The experimental results show that, though non-cooperative robots are not introduced
in the training process, the learned policy can still allow other robots to avoid the collision
with it.

4.3.2. Large-scale Scenarios

We also introduce two large-scale scenarios to demonstrate the generalization of the
learned policy. In specific, the first large-scale scenario extends from the circular scenario
that uniformly places 80 robots on a large circle and asks them to move to their antipodal
positions. An environment of the scenario is illustrated in Figure 6(a). The second large-
scale scenario extends from the random scenario that randomly places 200 robots and
200 obstacles with different sizes in an area with 60× 60 m2 and asks them to move to
random-choosing target positions within the range of 4.5 m to 5 m relative to corresponding
starting positions. An environment of the scenario is illustrated in Figure 6(b).

The experimental results show that, though both large-scale scenarios are unseen
for the learned policy, it can still perform well in environments of both scenarios without
fine-tuning.

4.3.3. Heterogeneous Robots

Now we introduce a scenario with heterogeneous robots, i.e., robots with different
sizes and shapes. Figure 7 illustrates six environments of the scenario, which contains three
rectangular robots, three circular robots and obstacles with different shapes.

The experimental results show that, after introducing corresponding robots with
different shapes in the training, the learned policy can also perform well in environments
of this scenario.

4.4. Efficiency Evaluation

In this section, we evaluate the efficiency of navigation of the learned collision avoid-
ance policy. We first introduce some metrics to evaluate the performance of approaches for
the term. Then we compare different policies using these metrics.
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Table 3. Performance metrics (as mean/standard deviation) evaluated for different methods on different scenarios with
varied scene sizes and a different number of robots.

Scenarios (agents, range) Method π̄ t̄ (mean/std) d̄ (mean/std) v̄ (mean/std)

Circle scenario
(6, radius 2.5m)

NH-ORCA 0.969 2.6676/1.3981 0.2004/0.1160 0.4490/0.1537
Sensor-level 1.000 2.0620/0.5576 0.8773/0.2269 0.5636/0.1328

Map-based Stage-1 0.937 8.2528/6.4266 0.7861/0.4763 0.3328/0.2881
Map-based Stage-2 1.000 2.0000/0.3502 0.8648/0.1447 0.5659/0.1283

Circle scenario
(8, radius 3m)

NH-ORCA 0.950 3.4988/1.9744 0.2057/0.1299 0.4479/0.1520
Sensor-level 1.000 2.5400/0.5084 1.1992/0.1918 0.5687/0.1233

Map-based Stage-1 0.914 10.3488/6.3236 0.9185/0.5446 0.3218/0.2880
Map-based Stage-2 1.000 2.3170/0.2577 1.0204/0.1513 0.5730/0.1146

Circle scenario
(10, radius 3.5m)

NH-ORCA 0.892 4.2930/2.6132 0.2486/0.1983 0.4366/0.1546
Sensor-level 1.000 3.3045/0.4784 1.5991/0.2145 0.5734/0.1142

Map-based Stage-1 0.903 11.9304/9.2772 1.0635/0.6968 0.3212/0.2867
Map-based Stage-2 1.000 2.5881/0.4650 1.1870/0.1710 0.5735/0.1114

Circle scenario
(12, radius 3.5m)

NH-ORCA 0.862 5.2137/3.4742 0.2817/0.2599 0.4078/0.1711
Sensor-level 1.000 3.7290/0.5355 1.7884/0.2525 0.5699/0.1170

Map-based Stage-1 0.873 15.7697/11.7475 1.0773/0.7475 0.2698/0.2871
Map-based Stage-2 1.000 2.6133/0.4527 1.2170/0.1769 0.5745/0.1120

Cross scenario
(8, 8× 8m2)

NH-ORCA 0.958 2.1283/1.5166 0.1883/0.2081 0.4851/0.1430
Sensor-level 0.995 2.8238/1.2894 1.1174/0.5214 0.5419/0.1588

Map-based Stage-1 0.950 4.0802/3.4952 1.0158/0.7322 0.4764/0.2278
Map-based Stage-2 1.000 1.8315/1.2333 0.7873/0.4912 0.5608/0.1384

Swap scenario
(8, 8× 8m2)

NH-ORCA 0.906 2.2174/2.1307 0.2651/0.2228 0.4845/0.1648
Sensor-level 1.000 2.7357/0.9494 1.1498/0.3479 0.5535/0.1419

Map-based Stage-1 0.994 2.7272/2.2479 0.8017/0.5761 0.5206/0.1874
Map-based Stage-2 1.000 2.0201/1.0430 0.9816/0.3660 0.5584/0.1424

New random scenario
(10, 8× 8m2)

NH-ORCA 0.934 4.3181/3.1353 0.5697/0.6412 0.3760/0.1890
Sensor-level 0.924 3.4519/3.4162 0.5417/0.5048 0.4017/0.2687

Map-based Stage-1 0.955 3.1650/2.5632 0.5514/0.4643 0.4202/0.2590
Map-based Stage-2 0.986 2.9009/2.4523 0.4531/0.3610 0.4460/0.2497

4.4.1. Metrics and Scenarios

We introduce four metrics to evaluate the efficiency of navigation of the policies w.r.t.
different approaches as the following:

• Success rate π̄: the ratio of the episodes that end with the robot reaching its target
without any collision.

• Extra time t̄: the average time required for every robot to successfully reach their
targets without any collisions minus the average time for every robot to drive straight
to their targets with the maximum speed.

• Extra distance d̄: the average moving distance required for every robot to successfully
reach their targets without any collisions minus the average moving distance for every
robot to drive straight to their targets with the maximum speed.

• Average linear velocity v̄: the average linear velocity for every robot during the naviga-
tion.

We will compare the efficiency for navigation of four policies, i.e., NH-ORCA policy,
Sensor-level policy, Map-based Stage-1 policy and Map-based Stage-2 policy. All of these
metrics with be calculated from the averaging results of 100 different environments of the
testing scenarios in each case.
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Now we introduce the testing scenarios used in this paper.

• Circle scenario: the scenario that is similar to the circular scenario, except that the
initial positions of all robots are uniformly placed on the circle. This scenario can be
categorized into four types by the different number of robots and the radius of the
circle, i.e., 6 robots with radius 2.5 m, 8 robots with radius 3 m, 10 robots with radius
3.5 m and 12 robots with radius 3.5 m.

• Cross scenario: the scenario that requires two groups of robots (four robots in each
group) to move cross each other.

• Swap scenario : the scenario that requires two groups of robots (four robots in each
group) to move towards each other and swap their positions.

• New random scenario: the scenario that is similar to the random scenario, except that 10
robots are considered in the scenario.

4.4.2. Quantitative Results

Table 3 summarizes the performance metrics of four approaches in the testing scenar-
ios, where metrics are calculated from the averaging results of 100 different environments
of the scenarios in each case. Note that Map-based Stage-2 policy outperforms others
in terms of extra time and average speed. The success rate of both Map-based Stage-2
policy and Sensor-level policy are both 1.0 in many scenarios. However, Sensor-level policy
does not perform well in other metrics compared to Map-based Stage-2 policy, which
indicates that the policy learned by the sensor-level approach can be further optimized by
the map-based approach. NH-ORCA policy is a non-cooperative policy, where each robot
performs greedily resulting in a small extra distance (as illustrated in Figure 8), but the
poor performance of other metrics. For Map-based Stage-1 policy, we can see that it has a
good performance in migrating to the circle scenario, which indicates that the policy can
be generalized to unseen scenarios since the circular scenario is not considered in the first
training stage. Note that the performance of the policy is greatly improved, after training in
the second stage. We also illustrate the performance of Sensor-level policy and Map-based
Stage-2 policy in the testing scenarios in Figure 9 and Figure 10, respectively.

4.5. Robustness Evaluation

In addition to the generalization and the navigation efficiency, the learned policy is
also preferred to be stable and robust to model uncertainty and input noises. We are to
verify the robustness of our learned policy by multiple experiments in this section.

4.5.1. Different Sensor Noise

Sensor noise and perceptual errors are common in robot systems. To verify the ability
of different approaches to resist noise, we gradually increase the error of laser sensing
distance data for Sensor-level policy and our Map-based (Stage-2) policy, and gradually
increase the perception error of surrounding robots’ positions and velocities for NH-ORCA
policy. Figure 11 depicts that the success rate of all three policies in both the circle scenario
with 12 robots and the new random scenario with 10 robots when the variance of Gaussian
noise increases. The results show that DRL-based policies, i.e., Map-based and Sensor-level
polices, are resilient to noise, which sensor noise affects the success rate of NH-ORCA
policy greatly.

4.5.2. Different FOV Limits

Different sensors have different FOVs, which also affects the performance of the
collision avoidance policy greatly. We consider five laser sensors with different FOVs
and apply our Map-based DPPO approach on their sensor data to train corresponding
Map-based policies. Figure 12(a) shows the learning curves of these Map-based policies
and Figure 12(b) shows the success rate of these policies in the new random scenario.
Moreover, we also test the Map-based policy trained by the sensor with 180-degree FOV on
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Figure 8. Trajectories of robots executing NH-ORCA policy in environments of the circle scenario (a-d), cross scenario (e),
swap scenario (f) and new random scenario (g-h), respectively. The trajectories of different robots are distinguished by
different colors, and color transparency is used to indicate the time state along each trajectory.
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Figure 9. Trajectories of robots executing Sensor-level policy in environments of the circle scenario (a-d), cross scenario (e),
swap scenario (f) and new random scenario (g-h), respectively. The trajectories of different robots are distinguished by
different colors, and color transparency is used to indicate the time state along each trajectory.
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Figure 10. Trajectories of robots executing Map-based Stage-2 policy in environments of the circle scenario (a-d), cross
scenario (e), swap scenario (f) and new random scenario (g-h), respectively. The trajectories of different robots are
distinguished by different colors, and color transparency is used to indicate the time state along each trajectory.
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Figure 11. (a) Comparison of the success rate of NH-ORCA policy, Sensor-level policy and Map-based
policy in the circle scenario with 12 robots, when the standard deviation of sensor noise increases. (b)
Comparison of success rates between the Map-based policy, Sensor-level policy and NH-ORCA in
the new random scenario with 10 robots, when the standard deviation of sensor noise increases.
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Figure 12. (a) Comparison of expected returns of the trained Map-based policies for sensors with
different Fields of View (FOVs). (b) Comparison of the success rate between the trained Map-based
policy with specific restricted FOVs and that with 180-degree FOV. training with specific restricted
FOV and the Map-based policy training with 180-degree FOV in the new random scenario.

(a) (b) (c)

Figure 13. (a) An environment contains a robot (green) with a depth camera and randomly placed
obstacles (white) in Gazebo. (b) Point cloud data generated by the depth camera with 120-degree
FOV. (c) The grid map generated from the point cloud data.

robots with restricted FOVs. The result shows that the policy performs better when robots
have the same FOV in both training and testing scenarios.

4.5.3. Different Sensor Types

As discussed in Section 1, the map-based approach can be easily deployed to robots
with different sensors. Here we illustrate such an example by applying the approach to
a robot with only a depth camera. Since our customized simulator lacks 3D information,
we choose Gazebo, a more realistic 3D simulator, to test the generalization ability of our
model. In specific, we implement a differential robot with a depth camera with a 120-degree
horizontal FOV and 640×480 resolution in Gazebo. We are to convert the point cloud
data generated by the depth camera into corresponding grid maps. We first down-sample

(a) (b) (c) (d)

Figure 14. The schematic diagram of the trajectory of the robot generated by the learning Map-
based policy using the depth camera in four simulation environments (a-d) with 8 randomly placed
obstacles.
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Figure 15. The robot is based on TurtleBot 2 with Kobuki base using either a Hokuyo UTM-30LX 2D
LiDAR or a Hokuyo URG-04LX 2D LiDAR and an NVIDIA Jetson TX2. A wooden shell is placed on
the top of the mobile platform to enable robots to detect each other.

the point cloud data to the resolution of the map, remove outliers, refine the result by
eliminating the ceiling, then generate the grid map from the bird’s eye view of the resulting
point cloud. Figure 13 illustrates the procedure of how to generate such a grid map from
the point cloud data. An example of the Using the generated grid map, we can construct
the corresponding egocentric local grid map, which can later be used to train the collision
avoidance policy by our map-based approach. Figure 14 shows the performance of Map-
based policy using the depth camera in environments with 8 randomly placed obstacles.
Note that the robot successfully avoids all obstacles and reaches its target the depth camera
only.

5. Real-world Experiments

In this section, we deploy the trained Map-based policy to real robots to perform
multi-robot obstacle avoidance in the real world. As discussed in Section 1, the map-based
approach is more robust to noisy sensor data, does not require robots’ movement data and
considers sizes and shapes of related robots, which make it more efficient and easier to
be deployed to real robots. However, there are more challenges in deploying the learned
collision avoidance policy from simulation to the real world. As discussed in [43], besides
noisy sensor data, the clocks of each individual robot are not synchronized with each other,
which results in an asynchronous distributed system hard to control, and robots cannot
provide consistent behavior with the same control command, due to many realistic factors
such as mechanical details, motor characteristics and the approximation with friction model.
In addition to the generalization capabilities and robustness on simulation environments
as discussed in Section 4, the real-world experiments show that the map-based approach
can be easily deployed to real robots and performs well in the real world. For the specific
performance of the robots in the experiments, please refer to the demonstration video at
https://youtu.be/KOb1q23L7-U.

In the following, we first introduce the hardware setup of real robots. Then, we
evaluate the performance of these robots in multiple scenarios in the real world. At last,
we demonstrate long-range navigation of the robot with our learned map-based collision
avoidance policy in a corridor environment.

5.1. Hardware Setup

We deploy the Map-based policy to four robots to perform multi-robot obstacle
avoidance in the real world. As shown in Figure 15, each robot is based on TurtleBot
2 with Kobuki base. Then the robot has a circular shape with a radius of 0.17 m. The
laser sensor used in each robot is either a Hokuyo UTM-30LX 2D LiDAR or a Hokuyo
URG-04LX 2D LiDAR (which has a lower price). The details of the Hokuyo 2D LiDAR

https://youtu.be/KOb1q23L7-U
https://youtu.be/KOb1q23L7-U
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Table 4. The details of the Hokuyo 2D LiDAR sensors.

Model No. UTM-30LX URG-04LX

Measuring area 0.1 to 30m, 270◦ 0.02 to 5.6m, 240◦

Accuracy 0.1 to 10m : ±30mm, 10 to 30m : ±50mm 0.06 to 1m : ±30mm, 1 to 4.095m : ±3%
Angular resolution 0.25◦ 0.36◦

Scanning time 25ms/scan 100ms/scan

sensors are listed in Table 4. All of these sensors provide a 180-degree FOV observation of
the surrounding environment in front of the robot. The robot applies an NVIDIA Jetson
TX2 as its computing platform. In specific, we implemented four versions of such a robot,
where two of them are equipped with Hokuyo UTM-30LX 2D LiDARs and two of them
are Hokuyo URG-04LX 2D LiDARs.

In experiments, the relative local goals of the robot are provided by a particle filter
based on a state estimator. The egocentric local grid map is constructed from the laser data,
which has a fixed size 6.0 ×6.0 m and the resolution 0.1 m at each time step. A wooden
shell is placed on the top of the mobile platform of the robot, which enables robots to detect
each other. We also use paper boxes and luggages to act as static and dynamic obstacles in
tests. The output of the trained policy network is directly used to control the robot, that
is, the range of robot linear velocity and angular velocity are vt ∈ [0, 0.6] (in meters per
second) and ωt ∈ [−0.9, 0.9] (in radians per second), respectively.

5.2. Static and Dynamic Scenarios

In this section, we introduce a series of real-world scenarios for a single robot to
evaluate the performance of the collision avoidance policy generated by our map-based
DPPO approach.

We first introduce a basic static scenario where some paper boxes are places as static
obstacles to block the robot’s path from its starting position to its target. Figure 16(a)
illustrates an environment of this scenario, in which the robot can successfully pass through
a line of obstacles with a narrow opening. Next, we extend the scenario by adding obstacles
to the front and the rear of the opening to increase the difficulty. Figure 16(b) illustrates
an environment of such scenario, in which the robot can still successfully pass through
the narrow opening. Then we introduce dynamic scenarios by allowing some obstacles to
appear suddenly. In specific, Figure 16(c) illustrates an environment in which a cardboard
appears suddenly in the moving path of the robot. Figure 16(d) illustrates an environment
extended from the situation in Figure 16(c), where a luggage moves across the path of
the robot. In both environments, the robot successfully detects the dynamic obstacles and
adjusts its movement in time to avoid the collision.

More demonstrations on these static and dynamic scenarios can be found in the
demonstration video. These experiments show that the robot using our learned collision
avoidance policy performs well in these scenarios.

5.3. Multi-robot Scenarios

In this section, we introduce a serious of real-world scenarios for multiple robots to
evaluate the performance of the multi-robot collision avoidance policy generated by our
map-based DPPO approach. Moreover, both static obstacles and dynamic pedestrians are
also added in these scenarios.

We first introduce a real-world swap scenario where two robots are required to move
towards each other and swap their positions. Figure 17(a) illustrates the performance of
the robots in this scenario, in which both robots successfully reach their targets without
collision. Next, we extend the two-robot cross scenario by randomly placing some static
obstacles to increase the difficulty. Figure 17(b) illustrates the performance of the robots
in the new scenario, in which both robots still successfully reach their targets without
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(a) Basic static scenario

(b) Extended static scenario

(c) Basic dynamic scenario

(d) Extended dynamic scenario

Figure 16. (a) The basic static scenario, where some paper boxes are places as static obstacles to block
the robot’s path from its starting position to its target. (b) The extended static scenario, where two
obstacles are added to the front and the rear of the narrow opening of a line of obstacles. (c) The
basic dynamic scenario, where cardboard appears suddenly in the moving path of the robot. (d) The
extended dynamic scenario, where cardboard appears suddenly and a luggage moves across the path
of the robot. Subfigures on the left show the trajectories and the grid maps of the robot. Subfigures
on the right show the environments in the real world, which correspond to situations that the robot
is at the place of the red circle in corresponding left figures. Yellow bounding boxes in the figures
denote corresponding dynamic obstacles in the environments.
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(a) Two-robot swap scenario

(b) Extended two-robot cross scenario

(c) Two-robot cross scenario with a pedestrian

(d) Three-robot circle scenario

Figure 17. (a) Two-robot swap scenario, where two robots are required to move towards each other
and swap their positions. (b) Extended two-robot cross scenario, which is extended from the two-
robot cross scenario by randomly placing some static obstacles. (c) Two-robot cross scenario with
a pedestrian, where a pedestrian is asked to walk across the paths of both robots. (d) Three-robot
circle scenario, where three robots are placed on a circle and their targets are set at opposite positions.
Subfigures on the left show the trajectories of the robots in the real world. Subfigures on the right
show the trajectories recorded by robots based on their own localizations. Notice that the trajectories
recorded by robots are not that smooth which is mainly due to the low accuracy of the robots’
localizations. Lines with different colors denote trajectories of different robots.
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(a) Four-robot cross scenario

(b) Four-robot circle scenario

(c) Extended four-robot circle scenario

(d) Four-robot circle scenario with pedestrians

Figure 18. (a) Four-robot cross scenario, where two groups of robots cross each other. (b) Four-robot
circle scenario, where four robots are placed on a circle and their targets are set at opposite positions.
(c) Extended four-robot circle scenario, which is extended from the four-robot circle scenario by
randomly placing some static obstacles. (d) Four-robot circle scenario with pedestrians, where two
pedestrians are asked to walk across the paths of all robots. Subfigures on the left show the trajectories
of the robots in the real world. Subfigures on the right show the trajectories recorded by robots based
on their own localizations. Notice that the trajectories recorded by robots are not that smooth which
is mainly due to the low accuracy of the robots’ localizations. Lines with different colors denote
trajectories of different robots.
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Figure 19. The long-range navigation scenario, where the navigation system with our DRL-based collision avoidance policy
to go through the long corridor while avoiding static obstacles and dynamic pedestrians. The upper picture denotes the
grid map of the entire environment map and the trajectory of the robot, and the square around the robot represents its
egocentric local grip map. The lower pictures specify situations of the corresponding number in the real world when the
robot is at the corresponding dotted circles in the map.

collision. Figure 17(b) also shows that the robot can automatically wait for a moment
and avoid the narrow opening when it observes that the other robot is going through the
opening. Then, we further extend the scenario by asking a pedestrian to walk across the
paths of both robots. Figure 17(c) illustrates the performance of the robots in this extended
scenario, in which both robots adaptively slow down their speed and wait for the pass
of the pedestrian before they each their targets successfully. Notice that pedestrians are
not introduced in the training procedure of the collision avoidance policy in our approach
and the shape and dynamic characteristics of pedestrians are quite different from other
robots and static obstacles. However, the learned policy still performs well in the scenario
with pedestrians. Later, we extend the two-robot scenario to involve three robots. We
introduce the three-robot circle scenario where three robots are placed on a circle and their
targets are set at opposite positions on the circle. Figure 17(d) illustrates the performance
of the robots in this scenario, in which all robots successfully reach their targets without
collision. At last, we extend these scenarios to involve four robots. Figure 18 illustrates
the performances of four robots in these scenarios, in which all robots still successfully
reach their targets without collision. In the four-robot cross scenario shown in Figure 18(a),
two groups of robots cross each other and reach their respective target points. Figure
18(b) shows the experimental results of the four-robot circle scenario, where four robots
are placed on a circle and their targets are set at opposite positions. In order to further
prove the generalization ability of our model in more complex environments, we added
three static obstacles or two pedestrians to the four-robot circle scenario. The experimental
results are shown in Figures 18(c) and 18(d). All robots can reach their respective target
points without collision in such a dynamic and crowded environment.

More demonstrations on these multi-robot scenarios can be found in the demonstration
video. These experiments show that, though the dynamic characteristics of both robots
in the real world are different from the simulation robots in the simulator, our learned
map-based collision avoidance policy can still perform well in these scenarios.

5.4. Long-range Navigation

Note that the learned collision avoidance policy is used to consist of the navigation
system for robots. We further verify the effectiveness of the entire navigation system with
our DRL-based collision avoidance policy for long-range navigation.
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In specific, we present a hierarchical architecture [56] for long-range navigation that
combines A* path planning [60] with the DRL-based collision avoidance policy generated
by our map-based DPPO approach, where the short-range DRL-based motion planner
directly maps egocentric local grid maps to robot’s control commands in terms of interme-
diate goals provided by the global A* path planner. In the navigation procedure, each local
goal position is selected as a position that is 3 m away from the robot on the global planned
path.

This navigation system with the DRL-based collision avoidance policy is evaluated
in environments with long corridors (about 27 meters). We use the open source SLAM
algorithm Cartographer [61] to build a global static map of the environment in advance.
The global static map is used for particle filter-based positioning and path planning, which
provide our DRL-based collision avoidance module with the pose of the local target point
relative to the robot. Figure 19 illustrates such an environment with its grid map and the
trajectory generated by the navigation system, where the robot can successfully go through
the long corridor while avoiding static obstacles and dynamic pedestrians.

6. Conclusions

In this paper, we propose a map-based DPPO approach for multi-robot collision
avoidance in distributed and communication-free environments. We use the egocentric
local grid map of a robot to represent the environmental information around it including
its shape and observable appearances of other robots and obstacles, which can be easily
generated by using multiple sensors or sensor fusion. Then we apply DPPO to train a
convolutional neural network that directly maps three frames of egocentric local grid
maps and the robot’s relative local goal positions into low-level robot control commands.
We apply a two stage training procedure to train networks using environments from the
random scenario and the circular scenario.

We evaluate the learned collision avoidance policy in multiple simulation scenarios
and compare it with related work. The experimental results show the outstanding per-
formance of our approach in terms of success rate, extra time as well as average linear
velocity. We also evaluate our learned policy from different perspectives, including the
generalization to unseen scenarios, the efficiency for navigation and the robustness to the
agent density and to the robots’ various shapes and dynamics. These experiments show
that our map-based approach outperforms others in many indicators. Then, we deploy the
trained model to real robots to evaluate its performance in various real-world scenarios,
including environments with static and dynamic obstacles, multiple robots and dynamic
pedestrians. These experiments show that our approach is efficient and easy to deploy to
real robots, and performs well in the real world. At last, we integrate our DRL-based colli-
sion avoidance policy into the navigation framework and test it in long-range navigation.
The experiment shows that the navigation system can successfully lead the robot to go
through a long corridor while avoiding static obstacles and dynamic pedestrians.

Our future work intends to use other multi-sensor fusion solutions to take advantage
of our Map-based method, and utilize other positioning methods (such as UWB technology
or visual SLAM) to solve the error-prone problem of laser positioning in dense environ-
ments, and finally deploy our map-based DRL navigation to more dynamic and crowding
environment, such as canteens and vegetable markets.
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