
Vol.:(0123456789)

SN Computer Science (2021) 2:417
https://doi.org/10.1007/s42979-021-00817-z

SN Computer Science

ORIGINAL RESEARCH

Deep Reinforcement Learning of Map‑Based Obstacle Avoidance
for Mobile Robot Navigation

Guangda Chen1 · Lifan Pan1 · Yu’an Chen1 · Pei Xu2 · Zhiqiang Wang1 · Peichen Wu1 · Jianmin Ji1  · Xiaoping Chen1

Received: 21 November 2020 / Accepted: 11 August 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Autonomous and safe navigation in complex environments without collisions is particularly important for mobile robots.
In this paper, we propose an end-to-end deep reinforcement learning method for mobile robot navigation with map-based
obstacle avoidance. Using the experience collected in the simulation environment, a convolutional neural network is trained
to predict the proper steering operation of the robot based on its egocentric local grid maps, which can accommodate vari-
ous sensors and fusion algorithms. We use dueling double DQN with prioritized experienced replay technology to update
parameters of the network and integrate curriculum learning techniques to enhance its performance. The trained deep neural
network is then transferred and executed on a real-world mobile robot to guide it to avoid local obstacles for long-range
navigation. The qualitative and quantitative evaluations of the new approach were performed in simulations and real robot
experiments. The results show that the end-to-end map-based obstacle avoidance model is easy to deploy, without any fine-
tuning, robust to sensor noise, compatible with different sensors, and better than other related DRL-based models in many
evaluation indicators.

Keywords  Robot navigation · Obstacle avoidance · Deep reinforcement learning · Grid map

Introduction

Robot navigation is the key and essential technology for
autonomous robots and is widely used in industrial, ser-
vice, or field applications [1]. One of the main challenges

of mobile robot navigation is to develop a safe and reliable
collision avoidance strategy to navigate from the starting
position to the desired target position without colliding with
obstacles and pedestrians in unknown complicated environ-
ments. Although numerous methods have been proposed to
solve this practical problem [2, 3], conventional methods are
usually based on a set of assumptions that may not be met
in practice [4], and may require a lot of computing needs
[5]. Besides, conventional algorithms usually involve many
parameters that need to be adjusted manually [6] rather than

This work is partially supported by the 2030 National Key
AI Program of China 2018AAA0100500, the National
Natural Science Foundation of China (No. 61573386), and
Guangdong Province Science and Technology Plan Projects (No.
2017B010110011).

 *	 Jianmin Ji
	 jianmin@ustc.edu.cn

	 Guangda Chen
	 cgdsss@mail.ustc.edu.cn

	 Lifan Pan
	 lifanpan@mail.ustc.edu.cn

	 Yu’an Chen
	 an11099@mail.ustc.edu.cn

	 Pei Xu
	 xp816@mail.ustc.edu.cn

	 Zhiqiang Wang
	 tt1248163264@mail.ustc.edu.cn

	 Peichen Wu
	 wpc16@mail.ustc.edu.cn

	 Xiaoping Chen
	 xpchen@ustc.edu.cn

1	 School of Computer Science and Technology, University
of Science and Technology of China, Hefei 230026, Anhui,
People’s Republic of China

2	 School of Data Science, University of Science
and Technology of China, Hefei 230026, Anhui,
People’s Republic of China

http://orcid.org/0000-0002-1515-0402
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00817-z&domain=pdf

	 SN Computer Science (2021) 2:417 417   Page 2 of 14

SN Computer Science

being able to learn automatically from past experience [7].
These methods are difficult to generalize well to unpredict-
able situations.

Recently, several supervised and self-supervised deep
learning methods have been applied to robot navigation.
However, these methods have some limitations that it is dif-
ficult to widely use in real robot environments. For example,
the training of the supervised learning approaches requires
a massive manually labeled dataset. On the other hand,
deep reinforcement learning (DRL) methods have achieved
significant success in many challenging tasks, such as Go
game [8], video games [9], and robotics [10]. Unlike previ-
ous supervised learning methods, DRL-based methods learn
from a large number of trials and corresponding feedback
(rewards), rather than from labeled data. To learn sophisti-
cated control strategies through reinforcement learning, the
robot needs to interact with the training environment for a
long time to accumulate experience about the consequences
of taking different actions in different states. Collecting such
interactive data in the real world is very expensive, time-
consuming, and sometimes impossible due to security issues
[11]. For example, Kahn et al. [7] proposed a generalized
computational graph that includes model-based methods and
value-based model-free methods and then instantiated the
graph to form a navigation model that is learned from the
original image and is highly sample efficient. However, it
takes tens of hours of destructive self-supervised training to
navigate only tens of meters without collision in an indoor
environment. Because learning good policies requires a lot
of trials, training in simulation worlds is more appropriate
than gaining experience from the real world. The learned
policies can be transferred according to the close corre-
spondence between the simulator and the real world. And
there are different transfer abilities to the real world between
different types of input data.

According to the type of input perception data, the existing
obstacle avoidance methods of mobile robots based on deep
reinforcement learning can be roughly divided into two catego-
ries: agent-level inputs and sensor-level inputs. In particular, an
agent-level method takes into account positions and the move-
ment data, like velocities, accelerations and paths, of obstacles
or other agents. Although the agent-level methods have the
disadvantages of requiring precise and complex front-end per-
ception processing modules, they still have the advantages of
sensor type independence (which can be adapted to different
front-end perception modules), easy-to-design training simula-
tion environment, and easy migration to the real environment.
However, a sensor-level method uses the sensor data directly.
Compared with agent-level methods, sensor-level methods do
not require a complex and time-consuming front-end percep-
tion module. However, because sensor data are not abstracted,
such methods are generally not compatible with other sensors,
or even multi-sensors carried by robots. Currently, more and

more robots are equipped with different and complementary
sensors and capable of navigating in complex environments
with high autonomy and safety guarantee [12]. But all exist-
ing sensor-level works depend on specific sensor types and
configurations.

In this paper, we propose an end-to-end map-based deep
reinforcement learning algorithm to improve the perfor-
mance of mobile robot decision-making in complicated envi-
ronments, which directly maps local probabilistic grid maps
with target position and robot velocity to an agent’s steer-
ing commands. Compared with previous works on DRL-
based obstacle avoidance, our motion planner is based on
egocentric local grid maps to represent observed surround-
ings, which enables the learned collision avoidance policy
to handle different types of sensor input efficiently, such as
the multi-sensor information from 2D/3D range scan finders
or RGB-D cameras. And our trained CNN-based policy is
easily transferred and executed on a real-world mobile robot
to guide it to avoid local obstacles for long-range navigation
and robust to sensor noise. We evaluate our DRL agents both
in simulation and on robot qualitatively and quantitatively.
Our results show the improvement in multiple indicators
over the DRL-based obstacle avoidance policy.

Our main contributions are summarized as follows:

–	 Formulate the obstacle avoidance of mobile robots as a deep
reinforcement learning problem based on the generated grid
map, which can be directly transferred to real-world envi-
ronments without adjusting any parameters, compatible
with different sensors and robust to sensor noise.

–	 Integrate curriculum learning technique to enhance the
performance of dueling double DQN with a prioritized
experienced replay.

–	 Conduct a variety of simulation and real-world experi-
ments to demonstrate the high adaptability of our model
to different sensor configurations and environments.

The rest of this article is organized as follows. “Related
Work” introduces our related work. “System Structure”
describes the structure of the DRL-based navigation sys-
tem. “Map-Based Obstacle Avoidance” introduces the deep
reinforcement learning algorithm for obstacle avoidance
based on egocentric local grid maps. “Experiments” pre-
sents the experimental results and “Conclusion” gives the
conclusions.

This paper is a significantly expanded version of our pre-
vious conference paper [13].

SN Computer Science (2021) 2:417 	 Page 3 of 14  417

SN Computer Science

Related Work

In recent years, deep neural networks have been widely
applied in the supervised learning paradigm to train a
collision avoidance policy that maps sensor input to the
robot’s control commands to navigate a robot in envi-
ronments with static obstacles. Learning-based obsta-
cle avoidance approaches try to optimize a parameter-
ized policy for collision avoidance from experiences in
various environments. Giusti et al. [14] used deep neural
networks to classify the input color images to determine
which action would keep the quadrotor on the trail. To
obtain a large number of training samples, they equipped
the hikers with three head-mounted cameras. The hikers
then glanced ahead and quickly walked on the mountain
path to collect the training data. Gandhi et al. [15] created
tens of thousands of crashes to make one of the biggest
drone crash datasets for training unmanned aerial vehicles
to fly. Tai et al. [16] proposed a hierarchical structure that
combines a decision-making process with a convolutional
neural network, which takes the original depth image as
the input. They use expert teaching methods to remotely
control the robot to avoid obstacles and collect experience
data manually. Although the trouble of manually collecting
labeled data can be alleviated by self-supervised learning,
the performance of learned models is largely limited by the
strategy of generating training labels. Pfeiffer et al. [17]
proposed a model capable of learning complex mappings
from raw 2D laser range results to the steering commands
of a mobile indoor robot. During the generation of train-
ing data, the robot is driven to a randomly selected target
position on the training map. The simulated 2D laser data,
relative target positions and, steering velocities generated
by conventional obstacle avoidance methods (dynamic
window method [18]) are recorded. The performance of
the learned models is largely limited by the generating
process of training data (steering commands) from con-
ventional methods, and thus the robot is just capable of
passing some simple static obstacles in the very empty
corridor. Liu et al. [19] proposed a deep imitation learning
method for obstacle avoidance based on local grid maps.
To improve the robustness of the policy, they expanded the
training data set with the artificially generated map, which
effectively alleviates the shortage of training samples in
normal demonstrations. However, the robot using their
method is only tested in an empty and static environment,
and thus the method proposed by Liu et al. [19] is difficult
to be extended to complicated environments.

On the other hand, obstacle avoidance algorithms based
on deep reinforcement learning have attracted widespread
attention. The existing DRL-based methods are roughly
divided into two categories: agent-level inputs and

sensor-level inputs. In particular, an agent-level method
takes into account positions and the movement data, like
velocities, accelerations and paths, of obstacles or other
agents. However, a sensor-level method uses the sensor
data directly. As representatives of agent-level methods,
Chen et al. [20] trained an agent-level collision avoidance
policy of mobile robots using deep reinforcement learn-
ing. They learned a value function for two agents, which
explicitly maps the agent’s own state and the states of its
neighbors into a collision-free action. And then they gen-
eralize the policy of two agents to the policy of multiple
agents. However, their method requires perfect perception
data, and the network input has dimensional constraints. In
their follow-up work [21], multiple sensors were deployed
to estimate the states of nearby pedestrians and obstacles.
Such a complex perception and decision-making system
not only requires expensive online calculations, but also
makes the entire system less robust to perceptual uncer-
tainty. Although the agent-level methods have the dis-
advantages of requiring precise and complex front-end
perception processing modules, they still have the advan-
tages of sensor type independence (which can be adapted
to different front-end perception modules), easy to design
simulation environment training, and easy migration to
the real environment.

As for sensor-level input, the types of sensor data used
in DRL-based obstacle avoidance mainly include 2D laser
ranges, depth images and color images. Tai et al. [22] pro-
posed a learning-based map-free motion planner by taking
sparse 10-dimensional range findings and a target position
relative to the mobile robot coordinate system as inputs and
taking steering commands as outputs. Long et al. [23] pro-
posed a decentralized sensor-level collision avoidance policy
for multi-robot systems, which directly maps the measure-
ment values of the original 2D laser sensor to the steering
commands of the agents. Xie et al. [11] proposed a novel
assisted reinforcement learning framework in which classic
controllers are used as an alternative and switchable strategy
to speed up DRL training. Furthermore, their neural network
also includes 1D convolutional network architectures, which
is used to process raw perception data captured by the 2D
laser scanner. The 2D laser-based method is competitive
in being portable to the real world because the difference
between the laser data in the simulator and the real world
is very small. However, 2D sensing data cannot cope with
complex 3D environments. Instead, vision sensors can pro-
vide 3D sensing information. However, during the training
process, RGB images will encounter significant deviations
from the actual situation and the simulated environment,
which leads to a very limited generalization of various situ-
ations. In [24], models trained in the simulator are migrated
through the conversion of actual and simulated images, but
their experimental environment is a single football field and

	 SN Computer Science (2021) 2:417 417   Page 4 of 14

SN Computer Science

cannot be generalized to all real environments. Compared
with RGB images, the depth image is easier to transfer the
trained model to actual deployment, because the depth image
is agnostic to texture variation and thus has a better visual
fidelity, thus greatly reducing the burden of transferring the
trained model to actual deployment [25]. Zhang et al. [26]
proposed a deep reinforcement learning algorithm based on
depth images, which can learn to transfer knowledge from
previously mastered obstacle avoidance tasks to new prob-
lem instances. Their algorithm greatly reduces the learn-
ing time required after solving the first task instance, which
makes it easy to adapt to the changing environment. Cur-
rently, all existing sensor-level work depends on specific
sensor types and configurations. However, equipped with
different and complementary sensors, the robots are capable
of navigating in complex environments with high autonomy
and safety guarantee [12]. Compared with agent-level meth-
ods, sensor-level methods do not require a complex and
time-consuming front-end perception module. However,
because sensor data are not abstracted, such methods are
generally not compatible with other sensors, or even multi-
sensors carried by robots.

System Structure

Our proposed DRL-based mobile robot navigation system
contains six modules. As shown in Fig. 1, the simultane-
ous localization and mapping (SLAM) module builds an
environment map based on sensor data and can estimate
the robot’s position and speed in the map at the same time.
When the target location is received, the global path plan-
ner module generates a path or a series of local target
points from the current location to the target location based
on a pre-built map from the SLAM module. To deal with
dynamic and complex environments, a safe and robust col-
lision avoidance module is needed in an unknown cluttered
environment. In addition to the local target points from the
path planning module and the robot speed provided by the
SLAM positioning module, our local collision avoidance

module also needs the surrounding environment informa-
tion, which is represented as the egocentric grid map gen-
erated by the grid map generator module based on various
sensor data. In general, our DRL-based local planner mod-
ule needs to input the speed of the robot generated by the
SLAM module, the location of the local target generated by
the global path planner, and the grid map of the map gen-
erator module that can fuse multi-sensor information, and
outputs the control commands of the robot: linear velocity v
and angular velocity w. Finally, the output speed command
is executed by the base controller module which maps the
control speed to the instructions of the wheel motor based
on the specific kinematics of the robot.

Map‑Based Obstacle Avoidance

We begin this section by introducing the mathematical defi-
nition of the local obstacle avoidance problem. Next, we
describe the DQN reinforcement learning algorithm with
improvement methods (including double DQN, dueling net-
work and prioritized experienced replay) and key ingredi-
ents (including the observation space, action space, reward
function and network architecture). Finally, the curriculum
learning technique is introduced.

Problem Formulation

At each timestamp t, given a frame of sensing data st , a local
target position �g in the robot coordinate system and the lin-
ear velocity vt , angular velocity �t of the robot, the proposed
map-based local obstacle avoidance policy can provides a
velocity action command at as follows:

where � and � are the parameters of grid map generator and
policy model, respectively. Specifically, the grid map �t is
constructed as a collection of robot configurations and the
perceived surrounding obstacles, which will be explained
below.

Therefore, the robot collision avoidance problem can
be simply expressed as a sequential decision problem. The
sequential decision problem involving observing obser-
vations �t ∼ [�t, �g, vt,�t] and the actions (velocities)
at ∼ [vt+1,�t+1] ( t = 0 ∶ tg ) can be regarded as a trajectory
l from starting position �s to desired target �g , where tg is
the travel time. Our goal is to minimize the expectation of
arrival time and take into account that the robot will not col-
lide with other objects in the environment, which is defined
as:

(1)�t = f�(st),

(2)at =��(�t, �g, vt,�t),

Fig. 1   The DRL-based navigation system for autonomous robots

SN Computer Science (2021) 2:417 	 Page 5 of 14  417

SN Computer Science

where �o is the position of obstacle and � indicates the size
and shape of the robot, (�o)k ∉ �(�t) represents that the
robot with � shape does not collide with any obstacle.

Dueling DDQN with Prioritized Experienced Replay

The Markov Decision Process (MDP) provides a mathe-
matical formulation and framework for modeling stochastic
planning and decision-making problems under uncertainty.
MDP is a five-tuple M = (S,A,P,R, �) , where S represents
the state space, A indicates the action space, and P is the
transition function, which describes the probability distri-
bution of the next state when the action a is taken in the
current state s , R represents the reward function, and � indi-
cates the discount factor. In the MDP problem, the policy
�(a|s) represents the basis on which an agent takes action,
the agent will choose an action based on policy �(a|s) . The
most common policy expression is a conditional probability
distribution, which is the probability of taking action a in
state s, i.e. �(a|s) = P(At = a|St = s) . At this time, the action
with a high probability is selected by an agent with a higher
probability. The quality of policy � can be evaluated by the
action-value function (Q-value) defined as:

That is, the Q-value function is the expectation of the sum
of discounted rewards. The goal of the agent is to maximize
the expected sum of future discounted rewards, which can be
achieved by using the Q-learning algorithm that iteratively
approximates the optimal Q-value function by the Bellman
equation:

Combined with deep a neural network, the Deep Q Network
(DQN) enables conventional reinforcement learning to cope
with complex high-dimensional decision-making problems.
Generally, the DQN algorithm contains two deep neural net-
works, including an online deep neural network with param-
eters � which are constantly updated by minimizing the loss
function (yt − Q(st, at;�

�))2 , and a separate target deep neural
network with parameters �′ , which are fixed for generating
Temporal-Difference (TD) targets and regularly assigned by
those of the online deep neural network. The yt in the loss
function is calculated as follows:

(3)

argmin
��

�[tg|at = ��(�t),

�t = �t−1 + at ⋅ �t,

∀k ∈ [1,N] ∶ (�o)k ∉ �(�t)],

(4)Q�(s, a) = �
�

[
∞∑

t=0

� tR(st, at)|s0 = s, a0 = a

]
.

(5)Q∗(st, at) = R(st, at) + �max
at+1

Q(st+1, at+1).

Due to the maximization step in Eq. (6), traditional Q-learn-
ing is affected by overestimation bias, which can hurt the
learning process. Double Q-learning [27] solves this overes-
timation problem by decoupling by choosing actions from its
evaluation in the maximization performed for the bootstrap
target. Therefore, if the episode does not end, yt in the above
formula is rewritten as follows:

In this work, dueling networks [28] and prioritized expe-
rienced replay [29] are also deployed for more reliable
estimation of Q-values and sampling efficiency of replay
buffer, respectively. Dueling DQN proposes a new network
architecture. They divided the Q-value estimation into two
parts: V(s) and Adv(s, a), one is to estimate how good it is
to be in state s, and the other is to estimate the advantage of
taking action a in that state. The two parts are based on the
same front-end perception module of the neural network and
finally fused to represent the final Q-value. The result of this
architecture is that state values can be learned independently
without being confused by the effects of action advantages.
This in particular leads to the identification of state informa-
tion where actions have no effect on.

The idea of Prioritized Experienced Replay is to prioritize
experiences that contain more important information than
others. Each experience is stored with an additional prior-
ity value, so the higher priority experiences have a higher
sampling probability, and have the opportunity to stay in
the buffer longer than other experiences. As importance
measure, the TD error can be used. It can be expected that
if the TD error is high, the agent can learn more from the
corresponding experience, because the agent’s performance
is better or worse than expected. Prioritized Experienced
Replay can speed up the learning process.

In the following, we describe the key ingredients of the
DQN reinforcement learning algorithm, including the details
of the observation and action space, the reward function and
the network architecture.

Observation Space

As mentioned in “Problem Formulation”, the observation
�t includes the generated grid maps �t which is compat-
ible with multiple sensors and easy to simulate and migrate
to real robots, the relative goal position �′

g
 and the current

velocity of the robot �t . Specifically, �t represents the grid
map images with the size and shape of robot generated
from a 2D laser scanner or other sensors. The relative target

(6)yt =

{
rt if episode ends

rt + �max
at+1

Q(st+1, at+1;�
�) otherwise .

(7)yt = rt + �Q(st+1, argmax
at+1

Q(st+1, at+1;�);�
�).

	 SN Computer Science (2021) 2:417 417   Page 6 of 14

SN Computer Science

position �′
g
 is a two-dimensional vector representing the tar-

get coordinates relative to the current position of the robot.
The observation �t includes the current linear velocity and
angular velocity of the differentially driven robot.

We use layered grid maps [30] to represent the environ-
mental information perceived by multiple sensors. Then,
through the map generator module, we obtain the state maps
�t by drawing the robot configuration (size and shape) into
the layered grid maps. Figure 2b shows an example of a grid
map generated from a single 2D laser scanner.

Action Space

In this work, the action space of the robot agent is a set of
allowable velocity in discrete space. The action of the dif-
ferential robot only consists of two parts: translation veloc-
ity and rotation velocity, i.e. �t = [vt,wt] . In the process of
implementation, considering the kinematics and practical
application of the robot, we set the range of the rotation
velocity � ∈ [− 0.9,− 0.6,− 0.3, 0.0, 0.3, 0.6, 0.9] (in radians
per second) and the translation velocity v ∈ [0.0, 0.2, 0.4, 0.6]
(in meters per second) . It is worth mentioning that since
the laser rangefinder carried by our robot cannot cover the
back of the robot, it is not allowed to move backward (i.e.
v < 0.0).

Reward

The objective in reinforcement learning is to maximize
expected discounted long-term return and the reward func-
tion in reinforcement learning implicitly specifies what the
agent is encouraged to do. In our long-distance obstacle
avoidance task, the reward signal is often weak and sparse
unless the target point is reached or a collision occurs. In this
work, the reward shaping technique [31] is used to solve this
problem by adding an extra reward signal (rg)t based on prior
knowledge. The value of (rg)t indicates that the target point
is attractive to the agent. Specifically, the closer to the target

point, the larger the value of (rg)t , the further away from the
target point, the smaller the value of (rg)t . That is

In addition, our objective is to avoid collisions during navi-
gation and minimize the average arrival time of the robot.
The reward r at time step t is a sum of four terms: rg , ra , rc
and rs . That is

In particular, when the robot reaches the target point, the
robot is awarded by (ra)t:

If the robot collides with other obstacles, it will be punished
by (rc)t:

And we also give robots a small fixed penalty rs at each step.
We set rarr = 500, � = 10, rcol = – 500 and rs = −5 in the
training procedure.

Network Architecture

We define a deep convolutional neural network that repre-
sents the action-value function for each discrete action. The
input of the neural network has three local maps � , which
have 60 × 60 × 3 gray pixels and a four-dimensional vector
with local target �′

g
 and robot speed � . The output of the net-

work is the Q values of each discrete action. The architecture
of the deep Q value network is shown in Fig. 3. The input
grid maps are fed into an 8 × 8 convolution layer with stride
4, then followed by a 4 × 4 convolution layer with stride 2
and a 3 × 3 convolution layer with stride 1. The local target
and the robot speed form a four-dimensional vector, which is
processed by a fully connected layer, and then the output is
tiled to a special dimension and added to the response map
of the processed grid maps. The results are then processed
by three 3 × 3 convolution layers with stride 1 and two fully
connected layers with 512, 512 units, respectively, and then
fed into the dueling network architecture, which divides the
Q value estimation into two parts: V(s) and Adv(s, a), one is
to estimate how good it is to be in state s, and the other is to
estimate the advantage of taking action a in that state. The
two parts are based on the same front-end perception module
of neural network and finally fused together to represent the
final Q value of 28 discrete actions. Once trained the net-
work can predict Q values for different actions in the input

(8)(rg)t = �(
‖‖‖�t−1 − �g

‖‖‖ −
‖‖‖�t − �g

‖‖‖).

(9)rt = (rg)t + (ra)t + (rc)t + (rs)t.

(10)(ra)t =

{
rarr if

‖‖‖�t − �g
‖‖‖ < 0.2

0 otherwise
.

(11)(rc)t =

{
rcol if collision

0 otherwise
.

Fig. 2   Gazebo training environments (left) and corresponding grid
map displayed by Rviz (right)

SN Computer Science (2021) 2:417 	 Page 7 of 14  417

SN Computer Science

state (three local maps � , local goal �′
g
 and robot velocity

� ). The action with the maximum Q value will be selected
and executed by the obstacle avoidance module.

Curriculum Learning

Curriculum learning [32] aims to improve learning perfor-
mance by designing appropriate curriculums for progres-
sive learners from simple to difficult. Elman et al. [33] put
forward the idea that a curriculum of progressively harder
tasks could significantly accelerate a neural network’s train-
ing. And curriculum learning has recently become prevalent
in the machine learning field, which assumes that the cur-
riculum learning can improve the convergence speed of the
training process and find a better local minimum value than
the existing solvers. In this work, we use Gazebo simulator
[34] to build a training world with multiple obstacles. As
the training progresses, we gradually increase the number of
obstacles in the environment and also increase the distance
from the starting point of the target point gradually. This
makes our strategy training from easy situation to difficult
ones. At the same time, the position of each obstacle and the
start and endpoints of the robot are automatically random
during all training episodes. One training scene is shown
in Fig. 2a.

Experiments

In this section, we will introduce the experimental setup and
evaluation in simulation and real environments. We quantita-
tively and comparatively evaluated the DQN-based obstacle
avoidance policy to show that it is superior to other related
methods on multiple indicators, robust to sensor noise and
compatible with different sensors. Moreover, we also per-
formed qualitative tests on real robots, including static obsta-
cles of cardboard boxes and dynamic pedestrian scenarios.
and also integrated our obstacle avoidance policy into the
navigation framework for long-range real-world navigation
testing. It should be noted that we only use global path plan-
ning to provide local target points for our local DRL-based

obstacle avoidance module in the long-range navigation
experiment at the end of “Navigation in real world”. In
other experiments, we only use the local obstacle avoidance
module to control the robot, that is, there is only one final
target point.

Reinforcement Learning Setup

The training experiments were performed using a simulated
differentially driven robot in a simulated virtual environ-
ment using Gazebo. As shown in Fig. 2a, a 180-degree 2D
laser scanner is installed on the front of the differential drive
robot. Based on performance and our computing resource
constraints, the system parameters are empirically deter-
mined as shown in Table 1.

The implementation of our deep neural network is in Ten-
sorFlow, and we trained the deep Q network in terms of the
objective function (Eq. 7) with Adam optimizer [35]. The
training hardware is a computer with an i9-9900k CPU and
a single NVIDIA GeForce 2080 Ti GPU. The entire train-
ing process (including exploration and training time) takes
about 10 hours to allow the policy to converge to robust
performance.

Experiments on Simulation Scenarios

Comparative Experiments

To quantitatively compare the performance of our approach
with other related methods in various test cases, we define
the following performance indicators for obstacle avoidance
behavior.

–	 Expected return Er is the average value of the sum of
each episode’s rewards.

–	 Success rate 𝜋̄ is the probability of the episodes in which
the robot reaching the goals within a limited step without
any collisions.

–	 Arrival step s̄ is the average number of steps required to
successfully reach the target point without any collisions.

Fig. 3   The architecture of our CNN-based dueling DQN network. This network takes three local maps and a vector with a local goal and robot
velocity as input and outputs the Q values of 28 discrete actions

	 SN Computer Science (2021) 2:417 417   Page 8 of 14

SN Computer Science

–	 Average angular velocity change ▿� is the average value
of the angular velocity changes for each step, which
reflects the smoothness of the trajectory.

In the training test, we compared our curricular DQN
policy with normal (non-curricular) DQN policy and PPO
with a one-dimensional convolutional network [23]. As
shown in Fig. 4, our DQN-based obstacle avoidance policy
has significant improvements over the PPO policy in terms
of expected return, success rate, arrival step, and average
angular velocity change, and the curricular DQN policy also
has slight improvements in multiple indicators. In the tests
with more obstacles, all trained agents have been tested in 10
random worlds with 12 random obstacles. Each trained agent

had to solve 200 static tasks per world. the specific indica-
tors values of various methods are shown in the Table 2. It
shows that our map-based DQN algorithm is better than PPO
algorithm with a one-dimensional convolution network in

Table 1   System parameters Hyperparameter Value Description

Learning rate 5 × 10−4 The learning rate of optimizer
Discount factor 0.99 Discount factor gamma for updating Q-learning
Minibatch size 1024 The number of training cases needed for each random gradient

descent update was calculated
Replay buffer size 2 × 105 The random gradient descent updates are sampled from this

number of the buffer
Image size 60 × 60 Length and width of the map image used for training
History length 3 Number of latest frames required for the input of the Q-network
Episode length 300 The longest trajectory length per episode
Initial exploration 1 Initial � in �-greedy exploration
Final exploration 0.1 Final � in �-greedy exploration
Control frequency 5 Control frequency of robot speed command

Fig. 4   Indicator curves of dif-
ferent methods during training.
Our DQN-based policy has sig-
nificant improvement over PPO
policy with 1D convolution
network on multiple indicators

Table 2   Experimental indicators’ values of different methods

Evaluating PPO with Normal Curricular

Indicator 1D conv DQN DQN
E
r

467.87 547.43 617.04
𝜋̄ 0.85 0.91 0.94
s̄ 40.1 27.76 26.13
▿� 0.46 0.39 0.35

SN Computer Science (2021) 2:417 	 Page 9 of 14  417

SN Computer Science

various indicators, and the use of curricular learning tech-
nology will further improve the result. Figure 5 shows a test
case of our curricular DQN policy in a test scenario.

Robustness to Noise

Figure 6 depicts the performance of our DQN-based policy
and the traditional vector field histogram (VFH) method
[36] in the environment with 12 random obstacles as the
noise error of the laser sensor data. Sensor noise is based
on Gaussian distribution with a fixed variance. When the
variance is zero, it means that there is no noise. The results
show that our DQN-based policy is resilient to noise, and the
laser noise seriously affects the arrival rate of the traditional
obstacle avoidance algorithm VFH. This is to be expected
because traditional obstacle avoidance methods use obsta-
cle clearance to calculate their objective function, and this
greedy method usually guides the robot to a local minimum.
Most of the time the robot is stuck somewhere instead of col-
liding with an obstacle. More importantly, the learned policy
(the DQN policy with noise in the Fig. 6) will work better
when using the same noise variance as the test environment
during training, which enables the neural network to learn
the ability to deal with sensor noise.

Qualitative Experiment

To evaluate the performance of our proposed method in
more difficult situations, we simulated some test envi-
ronments in the Gazebo simulator. As shown in Fig. 7, it
includes a simple obstacles environment, random obstacles
environment, right-angle environment, s-shaped environ-
ment, and u-shaped environment. From the motion trajec-
tory formed by robot footprints in the figures, we can see
that our learned policy can output relatively successful
actions in different complex environments. The experi-
mental results show that our dueling DDQN model can
obtain effective and proper steering commands in more

difficult situations, which proves its high transferability
and generalization capability.

Because obstacle avoidance algorithms usually only use
local perception information, the robot is easy to fall into
a difficult area (such as a u-shaped environment), which is
called a local minimum problem [37]. As shown in Fig. 8,
we also tested the ability of the VFH obstacle avoidance
algorithm to solve the local minimum problem. Especially
in the more difficult u-shaped environment (Fig. 8c), the
robot cannot reach the target point by swinging left and
right. In practical applications, the local obstacle avoid-
ance algorithm will cooperate with global path planning
to improve its ability to get out of trouble. Recently, some
researchers [38] began to explore how traditional plan-
ning algorithms can guide the DRL-based local obstacle
avoidance algorithm to better navigate. The design of
other modules of the navigation system can also alleviate
the local minimum problem caused by the local obstacle
avoidance algorithm to a certain extent.

Fig. 5   A test result of our cur-
ricular DQN policy in a test
scenario, the green and red dot
represents the starting and target
position, respectively, and the
robot’s trajectory is marked with
red arrows

Fig. 6   Success rate over laser noise. DQN policy trained with sensor
noise compared to policy without sensor noise and traditional VFH
method

	 SN Computer Science (2021) 2:417 417   Page 10 of 14

SN Computer Science

Compatible with Different Sensors

To prove that our method is compatible with different sen-
sors, we demonstrated a simulation experiment of obstacle
avoidance based on depth cameras. We simulated a depth
camera on the robot according to the parameters of Kinect
sensors. Its horizontal viewing angle is 60 degrees, the clos-
est measurement distance is 0.8 m, the longest measurement
distance is 4 m, and the resolution of the depth image is
640 × 480 . We first need to convert the point cloud data
into our grid map format. We downsample the point cloud
according to the map resolution, and at the same time filter

out the point cloud on the ground according to the height,
and then press down from the top to a two-dimensional flat
grid map. An example of generating a grid map from point
cloud data is shown in Fig. 9. Using the grid map generated
by the point cloud as input, we use our map-based deep
reinforcement learning method to learn obstacle avoidance
policies in an environment with seven random obstacles.
The curve of expected returns rise with the epoch during the
training process is shown in Fig. 10a. And Fig. 10b shows
that the robot with a depth camera in the test scene success-
fully avoided the obstacle and reached the endpoint. How-
ever, due to the narrow field of view of the depth camera, the

Fig. 7   Some simulation experiments, including simple obstacles
environment (a), random obstacles environment (b, c), right-angle
environment (d), s-shaped environment (e), and u-shaped environ-

ment (f). The orange rectangles represent the footprints of the robot,
and the interval between each footprint is 1 s

Fig. 8   Trajectories of robots executing VFH policy in the right-angle environment (a), s-shaped environment (b), and u-shaped environment (c),
respectively. The blue rectangles represent the footprints of the robot, and the interval between each footprint is one second

SN Computer Science (2021) 2:417 	 Page 11 of 14  417

SN Computer Science

success rate of the test in the environment shown in Fig. 10b
is only 0.83. In future work, we will use the recurrent neural
network architecture and increase the state history length
to increase the success rate of obstacle avoidance using a
depth camera.

Navigation in Real World

A variety of real-world experiments using our robot chas-
sis are conducted as well to verify the proposed map-based
DQN model. As shown in Fig. 11, our robot platform is a
differential wheel robot with a Hokuyo UTM-30LX scan-
ning laser rangefinder and a laptop with an i7-8750H CPU
and a NVIDIA 1060 GPU. The location and velocity of the
robot are provided by a state estimator based on particle
filter. The egocentric local map is constructed by laser meas-
urement and cropped to a fixed size of 6.0 × 6.0 m with a
resolution of 0.1 m. It is worth mentioning that our dueling
DDQN model trained in the simulated environment can be
directly transferred to the real-world environment without
adjusting any parameters, and well adapt to the unseen sce-
narios by adopting egocentric local maps as the inputs to
the network.

To illustrate the effectiveness of the proposed map-based
obstacle avoidance algorithm in a more intuitive way, Fig. 12
shows eight scene cases before and after the motion of the
robot, which is controlled based on the output of the DQN
model. The second frame of each group of images is the

Fig. 9   Point cloud data (white)
of the simulated Kinect RGB-D
sensor (a) and the grid map gen-
erated from the point cloud (b)

Fig. 10   Training curve of
obstacle avoidance based on
depth camera (a). A test result
of our DQN policy with a depth
camera (b), the robot with a
depth camera in the test scene
successfully avoided the obsta-
cle and reached the endpoint

Fig. 11   Our robot chassis with a laptop and a Hokuyo UTM-30LX
laser scanner

	 SN Computer Science (2021) 2:417 417   Page 12 of 14

SN Computer Science

scene after the robot has taken action against the first scene.
In the first and second case, the robot successfully avoided
the right-angle and s-shaped static obstacle environment
built by cardboard boxes. In the much more constrained
space shown in Fig. 12c and d, when the robot encounters
obstacles, the trained policy successfully provided reactive
action commands and keep the robot away from the obsta-
cles. Figure 12e–g show that the robot successfully avoided
passing pedestrians. Finally in Fig. 12h, two pedestrians sud-
denly appeared and stayed in front of the robot, and the robot
successfully changed the original route and bypassed them,
which indicates the high transferability and effectiveness of
our proposed obstacle avoidance model.

To further verify the effectiveness of the entire DRL-
based navigation system for long-range navigation, the entire
navigation system with DRL-based obstacle avoidance is
also evaluated in large area environments, including both
long corridor and big hall scenarios. The short-range DRL-
based motion planner directly maps egocentric local grid
maps to robot’s control commands in terms of intermedi-
ate goals provided by the global A ∗ path planner. In the
navigation procedure, each local goal position is selected
as a position that is 3 m away from the robot on the global
planned path. Five examples in corridor environments are
described in Fig. 13a–e. The robot set off from one end of
the corridor, successfully avoided static carton obstacles

Fig. 12   Robot test of obstacle avoidance module, including right-angle (a) and s-shaped environment (b), discrete random obstacles environment
(c, d). And the robot successfully avoided passing pedestrians (e, f, g) and sudden still pedestrians (h)

SN Computer Science (2021) 2:417 	 Page 13 of 14  417

SN Computer Science

and dynamic pedestrians, and reached the target point at the
other end of the corridor. Similarly, in a dynamic and open
lobby environment (Fig. 13f–j), the robot took the action
output by the DQN network and successfully reached the
endpoint several tens of meters away.

A video of simulated and real-world navigation experi-
ments can be found at https://​youtu.​be/​Eq4Aj​sFH_​cU.
The experimental results show that our proposed map-
based DQN model trained in the virtual environment can
be directly transferred to various simulated and real-world
unseen environments without adjusting any parameters.

Conclusion

In this paper, we propose an end-to-end deep reinforcement
learning method for mobile robot navigation with map-
based obstacle avoidance, which directly maps egocentric
local grid maps to an agent’s steering commands in terms
of the target position and movement velocity. Our approach
is mainly based on dueling double DQN with the prioritized
experienced replay, and integrate curriculum learning tech-
niques to further enhance our performance. It is worth men-
tioning that our proposed map-based DQN model trained in
the simulated environment can be directly transferred to var-
ious real-world unseen environments without adjusting any
parameters due to the high fidelity of the local grid maps.

Our proposed model was evaluated in multiple vir-
tual environments and compared with related works. The
experimental results show the outstanding performance
of our proposed method in terms of expected return, suc-
cess rate, arrival step as well as average angular velocity

change. Furthermore, many real-world scenarios were built
to evaluate our proposed model, including static obstacles
of cardboard boxes and dynamic pedestrian scenarios. The
experimental results show that our dueling DDQN model
can effectively output proper steering commands in static
and dynamic environments, which indicates the high trans-
ferability and effectiveness of our proposed obstacle avoid-
ance model. Finally, we integrated our obstacle avoidance
policy into the navigation framework for long-range naviga-
tion testing. Our mobile robot successfully avoided obstacles
and pedestrians and reached a target point tens of meters
away in the corridor and lobby scenarios.

Our future work intends to extend our map-based deep
reinforcement learning approach for multi-robot collision
avoidance in a distributed and communication-free environ-
ment, use other multi-sensor fusion solutions to take advan-
tage of our map-based method, and utilize other position-
ing methods (such as UWB technology or visual SLAM) to
solve the error-prone problem of laser positioning in dense
environments.

Funding  This research was supported by 2030 National Key AI
Program of China (Grant 2018AAA0100500), National Natural
Science Foundation of China (CN) (Grant 61573386) and Science
and Technology Planning Project of Guangdong Province (Grant
2017B010110011).

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Fig. 13   Long-range experiments in the corridor (a–e) and lobby (f–j). The robot successfully avoided obstacles and pedestrians and reached a
target point tens of meters away

https://youtu.be/Eq4AjsFH_cU

	 SN Computer Science (2021) 2:417 417   Page 14 of 14

SN Computer Science

References

	 1.	 Ingrand F, Ghallab M. Deliberation for autonomous robots: a sur-
vey. Artif Intell. 2017;247:10–44.

	 2.	 Minguez J, Lamiraux F, Laumond J-P. Motion planning and
obstacle avoidance. In: Springer handbook of robotics. Springer,
2016;1177–202.

	 3.	 Mohanan M, Salgoankar A. A survey of robotic motion planning
in dynamic environments. Robot Auton Syst. 2018;100:171–85.

	 4.	 Zhang W, Wei S, Teng Y, Zhang J, Wang X, Yan Z. Dynamic
obstacle avoidance for unmanned underwater vehicles based on an
improved velocity obstacle method. Sensors. 2017;17(12):2742.

	 5.	 Zhou D, Wang Z, Bandyopadhyay S, Schwager M. Fast, on-line
collision avoidance for dynamic vehicles using buffered Voronoi
cells. IEEE Robot Autom Lett. 2017;2(2):1047–54.

	 6.	 Rösmann C, Hoffmann F, Bertram T. Integrated online trajectory
planning and optimization in distinctive topologies. Robot Auton
Syst. 2017;88:142–53.

	 7.	 Kahn G, Villaflor A, Ding B, Abbeel P, Levine S. Self-supervised
deep reinforcement learning with generalized computation graphs
for robot navigation. In: Proceedings of the IEEE international
conference on robotics and automation (ICRA), 2018;1–8.

	 8.	 Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang
A, Guez A, Hubert T, Baker L, Lai M, Bolton A, et al. Mas-
tering the game of go without human knowledge. Nature.
2017;550(7676):354–9.

	 9.	 Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik
A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, et al.
Grandmaster level in starcraft II using multi-agent reinforcement
learning. Nature. 2019;575(7782):350–4.

	10.	 Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D. Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. Int J Robot Res. 2018;37(4–5):421–36.

	11.	 Xie L, Wang S, Rosa S, Markham A, Trigoni N. Learning with train-
ing wheels: speeding up training with a simple controller for deep
reinforcement learning. In: Proceedings of the IEEE international
conference on robotics and automation (ICRA), 2018;6276–83.

	12.	 Chen G, Cui G, Jin Z, Wu F, Chen X. Accurate intrinsic and
extrinsic calibration of RGB-D cameras with GP-based depth cor-
rection. IEEE Sens J. 2018;19(7):2685–94.

	13.	 Chen G, Pan L, Chen Y, Xu P, Wang Z, Wu P, Ji J, Chen X.
Robot navigation with map-based deep reinforcement learning.
In: Proceedings of the 2020 IEEE international conference on
networking, sensing and control (ICNSC), 2020;1–6.

	14.	 Giusti A, Guzzi J, Cireşan DC, He F-L, Rodríguez JP, Fontana F,
Faessler M, Forster C, Schmidhuber J, Di Caro G, et al. A machine
learning approach to visual perception of forest trails for mobile
robots. IEEE Robot Autom Lett. 2015;1(2):661–7.

	15.	 Gandhi D, Pinto L, Gupta A. Learning to fly by crashing. In: Pro-
ceedings of the IEEE/RSJ international conference on intelligent
robots and systems (IROS), 2017;3948–55.

	16.	 Tai L, Li S, Liu M. A deep-network solution towards model-less
obstacle avoidance. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (IROS), 2016;2759–64.

	17.	 Pfeiffer M, Schaeuble M, Nieto J, Siegwart R, Cadena C. From
perception to decision: a data-driven approach to end-to-end
motion planning for autonomous ground robots. In: Proceedings
of the IEEE international conference on robotics and automation
(ICRA), 2017;1527–33.

	18.	 Fox D, Burgard W, Thrun S. The dynamic window approach to
collision avoidance. IEEE Robot Autom Mag. 1997;4(1):23–33.

	19.	 Liu Y, Xu A, Chen Z. Map-based deep imitation learning for
obstacle avoidance. In: Proceedings of the IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS),
2018;8644–9.

	20.	 Chen YF, Liu M, Everett M, How JP. Decentralized non-commu-
nicating multiagent collision avoidance with deep reinforcement
learning. In: Proceedings of the IEEE international conference on
robotics and automation (ICRA), 2017;285–92.

	21.	 Chen YF, Everett M, Liu M, How JP. “Socially aware motion
planning with deep reinforcement learning,” In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017;1343–1350.

	22.	 Tai L, Paolo G, Liu M. Virtual-to-real deep reinforcement learn-
ing: Continuous control of mobile robots for mapless navigation.
In: Proceedings of the IEEE/RSJ international conference on intel-
ligent robots and systems (IROS), 2017;31–6.

	23.	 Long P, Fanl T, Liao X, Liu W, Zhang H, Pan J. Towards opti-
mally decentralized multi-robot collision avoidance via deep
reinforcement learning. In: Proceedings of the IEEE international
conference on robotics and automation (ICRA), 2018;6252–9.

	24.	 Lobos-Tsunekawa K, Leiva F, Ruiz-del Solar J. Visual navigation
for biped humanoid robots using deep reinforcement learning.
IEEE Robot Autom Lett. 2018;3(4):3247–54.

	25.	 Wu K, Abolfazli Esfahani M, Yuan S, Wang H. Learn to steer
through deep reinforcement learning. Sensors. 2018;18(11):3650.

	26.	 Zhang J, Springenberg JT, Boedecker J, Burgard W. Deep reinforce-
ment learning with successor features for navigation across similar
environments. In: Proceedings of the IEEE/RSJ international confer-
ence on intelligent robots and systems (IROS), 2017;2371–8.

	27.	 Van Hasselt H, Guez A, Silver D. Deep reinforcement learning
with double Q-learning. In: Proceedings of the thirtieth AAAI
conference on artificial intelligence (AAAI), 2016.

	28.	 Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N.
Dueling network architectures for deep reinforcement learning.
In: Proceedings of the 33rd international conference on machine
learning (ICML), 2016;1995–2003.

	29.	 Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience
replay. In 2016.

	30.	 Lu DV, Hershberger D, Smart WD. Layered costmaps for con-
text-sensitive navigation. In: Proceedings of the IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS),
2014;709–15.

	31.	 Ng AY, Harada D, Russell S. Policy invariance under reward
transformations: theory and application to reward shaping. ICML.
1999;99:278–87.

	32.	 Bengio Y, Louradour J, Collobert R, Weston J. Curriculum learn-
ing. In: Proceedings of the 26th annual international conference
on machine learning (ICML). ACM, 2009;41–8.

	33.	 Elman JL. Learning and development in neural networks: the
importance of starting small. Cognition. 1993;48(1):71–99.

	34.	 Koenig N, Howard A. Design and use paradigms for gazebo, an
open-source multi-robot simulator. Proc IEEE/RSJ Int Confe Intell
Robot Syst. 2004;3:2149–54.

	35.	 Kingma DP, Ba J. Adam: a method for stochastic optimization.
arXiv preprint arXiv:​1412.​6980, 2014.

	36.	 Ulrich I, Borenstein J. Vfh/sup*: local obstacle avoidance with
look-ahead verification. Proc IEEE Int Conf Robot Autom.
2000;3:2505–11.

	37.	 Koren Y, Borenstein J, et al. Potential field methods and their
inherent limitations for mobile robot navigation. Proc IEEE Int
Conf Robot Autom. 1991;2:1398–404.

	38.	 Brito B, Everett M, How JP, Alonso-Mora J. Where to go
next: learning a subgoal recommendation policy for navi-
gation in dynamic environments. IEEE Robot Autom Lett.
2021;6(3):4616–23.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1412.6980

	Deep Reinforcement Learning of Map-Based Obstacle Avoidance for Mobile Robot Navigation
	Abstract
	Introduction
	Related Work
	System Structure
	Map-Based Obstacle Avoidance
	Problem Formulation
	Dueling DDQN with Prioritized Experienced Replay
	Observation Space
	Action Space
	Reward
	Network Architecture

	Curriculum Learning

	Experiments
	Reinforcement Learning Setup
	Experiments on Simulation Scenarios
	Comparative Experiments
	Robustness to Noise
	Qualitative Experiment

	Compatible with Different Sensors
	Navigation in Real World

	Conclusion
	References

