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Abstract
Autonomous and safe navigation in complex environments without collisions is particularly important for mobile robots. 
In this paper, we propose an end-to-end deep reinforcement learning method for mobile robot navigation with map-based 
obstacle avoidance. Using the experience collected in the simulation environment, a convolutional neural network is trained 
to predict the proper steering operation of the robot based on its egocentric local grid maps, which can accommodate vari-
ous sensors and fusion algorithms. We use dueling double DQN with prioritized experienced replay technology to update 
parameters of the network and integrate curriculum learning techniques to enhance its performance. The trained deep neural 
network is then transferred and executed on a real-world mobile robot to guide it to avoid local obstacles for long-range 
navigation. The qualitative and quantitative evaluations of the new approach were performed in simulations and real robot 
experiments. The results show that the end-to-end map-based obstacle avoidance model is easy to deploy, without any fine-
tuning, robust to sensor noise, compatible with different sensors, and better than other related DRL-based models in many 
evaluation indicators.
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Introduction

Robot navigation is the key and essential technology for 
autonomous robots and is widely used in industrial, ser-
vice, or field applications [1]. One of the main challenges 

of mobile robot navigation is to develop a safe and reliable 
collision avoidance strategy to navigate from the starting 
position to the desired target position without colliding with 
obstacles and pedestrians in unknown complicated environ-
ments. Although numerous methods have been proposed to 
solve this practical problem [2, 3], conventional methods are 
usually based on a set of assumptions that may not be met 
in practice [4], and may require a lot of computing needs 
[5]. Besides, conventional algorithms usually involve many 
parameters that need to be adjusted manually [6] rather than 
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being able to learn automatically from past experience [7]. 
These methods are difficult to generalize well to unpredict-
able situations.

Recently, several supervised and self-supervised deep 
learning methods have been applied to robot navigation. 
However, these methods have some limitations that it is dif-
ficult to widely use in real robot environments. For example, 
the training of the supervised learning approaches requires 
a massive manually labeled dataset. On the other hand, 
deep reinforcement learning (DRL) methods have achieved 
significant success in many challenging tasks, such as Go 
game [8], video games [9], and robotics [10]. Unlike previ-
ous supervised learning methods, DRL-based methods learn 
from a large number of trials and corresponding feedback 
(rewards), rather than from labeled data. To learn sophisti-
cated control strategies through reinforcement learning, the 
robot needs to interact with the training environment for a 
long time to accumulate experience about the consequences 
of taking different actions in different states. Collecting such 
interactive data in the real world is very expensive, time-
consuming, and sometimes impossible due to security issues 
[11]. For example, Kahn et al. [7] proposed a generalized 
computational graph that includes model-based methods and 
value-based model-free methods and then instantiated the 
graph to form a navigation model that is learned from the 
original image and is highly sample efficient. However, it 
takes tens of hours of destructive self-supervised training to 
navigate only tens of meters without collision in an indoor 
environment. Because learning good policies requires a lot 
of trials, training in simulation worlds is more appropriate 
than gaining experience from the real world. The learned 
policies can be transferred according to the close corre-
spondence between the simulator and the real world. And 
there are different transfer abilities to the real world between 
different types of input data.

According to the type of input perception data, the existing 
obstacle avoidance methods of mobile robots based on deep 
reinforcement learning can be roughly divided into two catego-
ries: agent-level inputs and sensor-level inputs. In particular, an 
agent-level method takes into account positions and the move-
ment data, like velocities, accelerations and paths, of obstacles 
or other agents. Although the agent-level methods have the 
disadvantages of requiring precise and complex front-end per-
ception processing modules, they still have the advantages of 
sensor type independence (which can be adapted to different 
front-end perception modules), easy-to-design training simula-
tion environment, and easy migration to the real environment. 
However, a sensor-level method uses the sensor data directly. 
Compared with agent-level methods, sensor-level methods do 
not require a complex and time-consuming front-end percep-
tion module. However, because sensor data are not abstracted, 
such methods are generally not compatible with other sensors, 
or even multi-sensors carried by robots. Currently, more and 

more robots are equipped with different and complementary 
sensors and capable of navigating in complex environments 
with high autonomy and safety guarantee [12]. But all exist-
ing sensor-level works depend on specific sensor types and 
configurations.

In this paper, we propose an end-to-end map-based deep 
reinforcement learning algorithm to improve the perfor-
mance of mobile robot decision-making in complicated envi-
ronments, which directly maps local probabilistic grid maps 
with target position and robot velocity to an agent’s steer-
ing commands. Compared with previous works on DRL-
based obstacle avoidance, our motion planner is based on 
egocentric local grid maps to represent observed surround-
ings, which enables the learned collision avoidance policy 
to handle different types of sensor input efficiently, such as 
the multi-sensor information from 2D/3D range scan finders 
or RGB-D cameras. And our trained CNN-based policy is 
easily transferred and executed on a real-world mobile robot 
to guide it to avoid local obstacles for long-range navigation 
and robust to sensor noise. We evaluate our DRL agents both 
in simulation and on robot qualitatively and quantitatively. 
Our results show the improvement in multiple indicators 
over the DRL-based obstacle avoidance policy.

Our main contributions are summarized as follows:

–	 Formulate the obstacle avoidance of mobile robots as a deep 
reinforcement learning problem based on the generated grid 
map, which can be directly transferred to real-world envi-
ronments without adjusting any parameters, compatible 
with different sensors and robust to sensor noise.

–	 Integrate curriculum learning technique to enhance the 
performance of dueling double DQN with a prioritized 
experienced replay.

–	 Conduct a variety of simulation and real-world experi-
ments to demonstrate the high adaptability of our model 
to different sensor configurations and environments.

The rest of this article is organized as follows. “Related 
Work” introduces our related work. “System Structure” 
describes the structure of the DRL-based navigation sys-
tem. “Map-Based Obstacle Avoidance” introduces the deep 
reinforcement learning algorithm for obstacle avoidance 
based on egocentric local grid maps. “Experiments” pre-
sents the experimental results and “Conclusion” gives the 
conclusions.

This paper is a significantly expanded version of our pre-
vious conference paper [13].



SN Computer Science           (2021) 2:417 	 Page 3 of 14    417 

SN Computer Science

Related Work

In recent years, deep neural networks have been widely 
applied in the supervised learning paradigm to train a 
collision avoidance policy that maps sensor input to the 
robot’s control commands to navigate a robot in envi-
ronments with static obstacles. Learning-based obsta-
cle avoidance approaches try to optimize a parameter-
ized policy for collision avoidance from experiences in 
various environments. Giusti et al. [14] used deep neural 
networks to classify the input color images to determine 
which action would keep the quadrotor on the trail. To 
obtain a large number of training samples, they equipped 
the hikers with three head-mounted cameras. The hikers 
then glanced ahead and quickly walked on the mountain 
path to collect the training data. Gandhi et al. [15] created 
tens of thousands of crashes to make one of the biggest 
drone crash datasets for training unmanned aerial vehicles 
to fly. Tai et al. [16] proposed a hierarchical structure that 
combines a decision-making process with a convolutional 
neural network, which takes the original depth image as 
the input. They use expert teaching methods to remotely 
control the robot to avoid obstacles and collect experience 
data manually. Although the trouble of manually collecting 
labeled data can be alleviated by self-supervised learning, 
the performance of learned models is largely limited by the 
strategy of generating training labels. Pfeiffer et al. [17] 
proposed a model capable of learning complex mappings 
from raw 2D laser range results to the steering commands 
of a mobile indoor robot. During the generation of train-
ing data, the robot is driven to a randomly selected target 
position on the training map. The simulated 2D laser data, 
relative target positions and, steering velocities generated 
by conventional obstacle avoidance methods (dynamic 
window method [18]) are recorded. The performance of 
the learned models is largely limited by the generating 
process of training data (steering commands) from con-
ventional methods, and thus the robot is just capable of 
passing some simple static obstacles in the very empty 
corridor. Liu et al. [19] proposed a deep imitation learning 
method for obstacle avoidance based on local grid maps. 
To improve the robustness of the policy, they expanded the 
training data set with the artificially generated map, which 
effectively alleviates the shortage of training samples in 
normal demonstrations. However, the robot using their 
method is only tested in an empty and static environment, 
and thus the method proposed by Liu et al. [19] is difficult 
to be extended to complicated environments.

On the other hand, obstacle avoidance algorithms based 
on deep reinforcement learning have attracted widespread 
attention. The existing DRL-based methods are roughly 
divided into two categories: agent-level inputs and 

sensor-level inputs. In particular, an agent-level method 
takes into account positions and the movement data, like 
velocities, accelerations and paths, of obstacles or other 
agents. However, a sensor-level method uses the sensor 
data directly. As representatives of agent-level methods, 
Chen et al. [20] trained an agent-level collision avoidance 
policy of mobile robots using deep reinforcement learn-
ing. They learned a value function for two agents, which 
explicitly maps the agent’s own state and the states of its 
neighbors into a collision-free action. And then they gen-
eralize the policy of two agents to the policy of multiple 
agents. However, their method requires perfect perception 
data, and the network input has dimensional constraints. In 
their follow-up work [21], multiple sensors were deployed 
to estimate the states of nearby pedestrians and obstacles. 
Such a complex perception and decision-making system 
not only requires expensive online calculations, but also 
makes the entire system less robust to perceptual uncer-
tainty. Although the agent-level methods have the dis-
advantages of requiring precise and complex front-end 
perception processing modules, they still have the advan-
tages of sensor type independence (which can be adapted 
to different front-end perception modules), easy to design 
simulation environment training, and easy migration to 
the real environment.

As for sensor-level input, the types of sensor data used 
in DRL-based obstacle avoidance mainly include 2D laser 
ranges, depth images and color images. Tai et al. [22] pro-
posed a learning-based map-free motion planner by taking 
sparse 10-dimensional range findings and a target position 
relative to the mobile robot coordinate system as inputs and 
taking steering commands as outputs. Long et al. [23] pro-
posed a decentralized sensor-level collision avoidance policy 
for multi-robot systems, which directly maps the measure-
ment values of the original 2D laser sensor to the steering 
commands of the agents. Xie et al. [11] proposed a novel 
assisted reinforcement learning framework in which classic 
controllers are used as an alternative and switchable strategy 
to speed up DRL training. Furthermore, their neural network 
also includes 1D convolutional network architectures, which 
is used to process raw perception data captured by the 2D 
laser scanner. The 2D laser-based method is competitive 
in being portable to the real world because the difference 
between the laser data in the simulator and the real world 
is very small. However, 2D sensing data cannot cope with 
complex 3D environments. Instead, vision sensors can pro-
vide 3D sensing information. However, during the training 
process, RGB images will encounter significant deviations 
from the actual situation and the simulated environment, 
which leads to a very limited generalization of various situ-
ations. In [24], models trained in the simulator are migrated 
through the conversion of actual and simulated images, but 
their experimental environment is a single football field and 



	 SN Computer Science           (2021) 2:417   417   Page 4 of 14

SN Computer Science

cannot be generalized to all real environments. Compared 
with RGB images, the depth image is easier to transfer the 
trained model to actual deployment, because the depth image 
is agnostic to texture variation and thus has a better visual 
fidelity, thus greatly reducing the burden of transferring the 
trained model to actual deployment [25]. Zhang et al. [26] 
proposed a deep reinforcement learning algorithm based on 
depth images, which can learn to transfer knowledge from 
previously mastered obstacle avoidance tasks to new prob-
lem instances. Their algorithm greatly reduces the learn-
ing time required after solving the first task instance, which 
makes it easy to adapt to the changing environment. Cur-
rently, all existing sensor-level work depends on specific 
sensor types and configurations. However, equipped with 
different and complementary sensors, the robots are capable 
of navigating in complex environments with high autonomy 
and safety guarantee [12]. Compared with agent-level meth-
ods, sensor-level methods do not require a complex and 
time-consuming front-end perception module. However, 
because sensor data are not abstracted, such methods are 
generally not compatible with other sensors, or even multi-
sensors carried by robots.

System Structure

Our proposed DRL-based mobile robot navigation system 
contains six modules. As shown in Fig. 1, the simultane-
ous localization and mapping (SLAM) module builds an 
environment map based on sensor data and can estimate 
the robot’s position and speed in the map at the same time. 
When the target location is received, the global path plan-
ner module generates a path or a series of local target 
points from the current location to the target location based 
on a pre-built map from the SLAM module. To deal with 
dynamic and complex environments, a safe and robust col-
lision avoidance module is needed in an unknown cluttered 
environment. In addition to the local target points from the 
path planning module and the robot speed provided by the 
SLAM positioning module, our local collision avoidance 

module also needs the surrounding environment informa-
tion, which is represented as the egocentric grid map gen-
erated by the grid map generator module based on various 
sensor data. In general, our DRL-based local planner mod-
ule needs to input the speed of the robot generated by the 
SLAM module, the location of the local target generated by 
the global path planner, and the grid map of the map gen-
erator module that can fuse multi-sensor information, and 
outputs the control commands of the robot: linear velocity v 
and angular velocity w. Finally, the output speed command 
is executed by the base controller module which maps the 
control speed to the instructions of the wheel motor based 
on the specific kinematics of the robot.

Map‑Based Obstacle Avoidance

We begin this section by introducing the mathematical defi-
nition of the local obstacle avoidance problem. Next, we 
describe the DQN reinforcement learning algorithm with 
improvement methods (including double DQN, dueling net-
work and prioritized experienced replay) and key ingredi-
ents (including the observation space, action space, reward 
function and network architecture). Finally, the curriculum 
learning technique is introduced.

Problem Formulation

At each timestamp t, given a frame of sensing data st , a local 
target position �g in the robot coordinate system and the lin-
ear velocity vt , angular velocity �t of the robot, the proposed 
map-based local obstacle avoidance policy can provides a 
velocity action command at as follows:

where � and � are the parameters of grid map generator and 
policy model, respectively. Specifically, the grid map �t is 
constructed as a collection of robot configurations and the 
perceived surrounding obstacles, which will be explained 
below.

Therefore, the robot collision avoidance problem can 
be simply expressed as a sequential decision problem. The 
sequential decision problem involving observing obser-
vations �t ∼ [�t, �g, vt,�t] and the actions (velocities) 
at ∼ [vt+1,�t+1] ( t = 0 ∶ tg ) can be regarded as a trajectory 
l from starting position �s to desired target �g , where tg is 
the travel time. Our goal is to minimize the expectation of 
arrival time and take into account that the robot will not col-
lide with other objects in the environment, which is defined 
as:

(1)�t = f�(st),

(2)at =��(�t, �g, vt,�t),

Fig. 1   The DRL-based navigation system for autonomous robots
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where �o is the position of obstacle and � indicates the size 
and shape of the robot, (�o)k ∉ �(�t) represents that the 
robot with � shape does not collide with any obstacle.

Dueling DDQN with Prioritized Experienced Replay

The Markov Decision Process (MDP) provides a mathe-
matical formulation and framework for modeling stochastic 
planning and decision-making problems under uncertainty. 
MDP is a five-tuple M = (S,A,P,R, �) , where S represents 
the state space, A indicates the action space, and P is the 
transition function, which describes the probability distri-
bution of the next state when the action a is taken in the 
current state s , R represents the reward function, and � indi-
cates the discount factor. In the MDP problem, the policy 
�(a|s) represents the basis on which an agent takes action, 
the agent will choose an action based on policy �(a|s) . The 
most common policy expression is a conditional probability 
distribution, which is the probability of taking action a in 
state s, i.e. �(a|s) = P(At = a|St = s) . At this time, the action 
with a high probability is selected by an agent with a higher 
probability. The quality of policy � can be evaluated by the 
action-value function (Q-value) defined as:

That is, the Q-value function is the expectation of the sum 
of discounted rewards. The goal of the agent is to maximize 
the expected sum of future discounted rewards, which can be 
achieved by using the Q-learning algorithm that iteratively 
approximates the optimal Q-value function by the Bellman 
equation:

Combined with deep a neural network, the Deep Q Network 
(DQN) enables conventional reinforcement learning to cope 
with complex high-dimensional decision-making problems. 
Generally, the DQN algorithm contains two deep neural net-
works, including an online deep neural network with param-
eters � which are constantly updated by minimizing the loss 
function (yt − Q(st, at;�

�))2 , and a separate target deep neural 
network with parameters �′ , which are fixed for generating 
Temporal-Difference (TD) targets and regularly assigned by 
those of the online deep neural network. The yt in the loss 
function is calculated as follows:

(3)

argmin
��

�[tg|at = ��(�t),

�t = �t−1 + at ⋅ �t,

∀k ∈ [1,N] ∶ (�o)k ∉ �(�t)],

(4)Q�(s, a) = �
�

[
∞∑

t=0

� tR(st, at)|s0 = s, a0 = a

]
.

(5)Q∗(st, at) = R(st, at) + �max
at+1

Q(st+1, at+1).

Due to the maximization step in Eq. (6), traditional Q-learn-
ing is affected by overestimation bias, which can hurt the 
learning process. Double Q-learning [27] solves this overes-
timation problem by decoupling by choosing actions from its 
evaluation in the maximization performed for the bootstrap 
target. Therefore, if the episode does not end, yt in the above 
formula is rewritten as follows:

In this work, dueling networks [28] and prioritized expe-
rienced replay [29] are also deployed for more reliable 
estimation of Q-values and sampling efficiency of replay 
buffer, respectively. Dueling DQN proposes a new network 
architecture. They divided the Q-value estimation into two 
parts: V(s) and Adv(s, a), one is to estimate how good it is 
to be in state s, and the other is to estimate the advantage of 
taking action a in that state. The two parts are based on the 
same front-end perception module of the neural network and 
finally fused to represent the final Q-value. The result of this 
architecture is that state values can be learned independently 
without being confused by the effects of action advantages. 
This in particular leads to the identification of state informa-
tion where actions have no effect on.

The idea of Prioritized Experienced Replay is to prioritize 
experiences that contain more important information than 
others. Each experience is stored with an additional prior-
ity value, so the higher priority experiences have a higher 
sampling probability, and have the opportunity to stay in 
the buffer longer than other experiences. As importance 
measure, the TD error can be used. It can be expected that 
if the TD error is high, the agent can learn more from the 
corresponding experience, because the agent’s performance 
is better or worse than expected. Prioritized Experienced 
Replay can speed up the learning process.

In the following, we describe the key ingredients of the 
DQN reinforcement learning algorithm, including the details 
of the observation and action space, the reward function and 
the network architecture.

Observation Space

As mentioned in “Problem Formulation”, the observation 
�t includes the generated grid maps �t which is compat-
ible with multiple sensors and easy to simulate and migrate 
to real robots, the relative goal position �′

g
 and the current 

velocity of the robot �t . Specifically, �t represents the grid 
map images with the size and shape of robot generated 
from a 2D laser scanner or other sensors. The relative target 

(6)yt =

{
rt if episode ends

rt + �max
at+1

Q(st+1, at+1;�
�) otherwise .

(7)yt = rt + �Q(st+1, argmax
at+1

Q(st+1, at+1;�);�
�).
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position �′
g
 is a two-dimensional vector representing the tar-

get coordinates relative to the current position of the robot. 
The observation �t includes the current linear velocity and 
angular velocity of the differentially driven robot.

We use layered grid maps [30] to represent the environ-
mental information perceived by multiple sensors. Then, 
through the map generator module, we obtain the state maps 
�t by drawing the robot configuration (size and shape) into 
the layered grid maps. Figure 2b shows an example of a grid 
map generated from a single 2D laser scanner.

Action Space

In this work, the action space of the robot agent is a set of 
allowable velocity in discrete space. The action of the dif-
ferential robot only consists of two parts: translation veloc-
ity and rotation velocity, i.e. �t = [vt,wt] . In the process of 
implementation, considering the kinematics and practical 
application of the robot, we set the range of the rotation 
velocity � ∈ [− 0.9,− 0.6,− 0.3, 0.0, 0.3, 0.6, 0.9] (in radians 
per second) and the translation velocity v ∈ [0.0, 0.2, 0.4, 0.6] 
(in meters per second) . It is worth mentioning that since 
the laser rangefinder carried by our robot cannot cover the 
back of the robot, it is not allowed to move backward (i.e. 
v < 0.0).

Reward

The objective in reinforcement learning is to maximize 
expected discounted long-term return and the reward func-
tion in reinforcement learning implicitly specifies what the 
agent is encouraged to do. In our long-distance obstacle 
avoidance task, the reward signal is often weak and sparse 
unless the target point is reached or a collision occurs. In this 
work, the reward shaping technique [31] is used to solve this 
problem by adding an extra reward signal (rg)t based on prior 
knowledge. The value of (rg)t indicates that the target point 
is attractive to the agent. Specifically, the closer to the target 

point, the larger the value of (rg)t , the further away from the 
target point, the smaller the value of (rg)t . That is

In addition, our objective is to avoid collisions during navi-
gation and minimize the average arrival time of the robot. 
The reward r at time step t is a sum of four terms: rg , ra , rc 
and rs . That is

In particular, when the robot reaches the target point, the 
robot is awarded by (ra)t:

If the robot collides with other obstacles, it will be punished 
by (rc)t:

And we also give robots a small fixed penalty rs at each step. 
We set rarr = 500, � = 10, rcol = – 500 and rs = −5 in the 
training procedure.

Network Architecture

We define a deep convolutional neural network that repre-
sents the action-value function for each discrete action. The 
input of the neural network has three local maps � , which 
have 60 × 60 × 3 gray pixels and a four-dimensional vector 
with local target �′

g
 and robot speed � . The output of the net-

work is the Q values of each discrete action. The architecture 
of the deep Q value network is shown in Fig. 3. The input 
grid maps are fed into an 8 × 8 convolution layer with stride 
4, then followed by a 4 × 4 convolution layer with stride 2 
and a 3 × 3 convolution layer with stride 1. The local target 
and the robot speed form a four-dimensional vector, which is 
processed by a fully connected layer, and then the output is 
tiled to a special dimension and added to the response map 
of the processed grid maps. The results are then processed 
by three 3 × 3 convolution layers with stride 1 and two fully 
connected layers with 512, 512 units, respectively, and then 
fed into the dueling network architecture, which divides the 
Q value estimation into two parts: V(s) and Adv(s, a), one is 
to estimate how good it is to be in state s, and the other is to 
estimate the advantage of taking action a in that state. The 
two parts are based on the same front-end perception module 
of neural network and finally fused together to represent the 
final Q value of 28 discrete actions. Once trained the net-
work can predict Q values for different actions in the input 

(8)(rg)t = �(
‖‖‖�t−1 − �g

‖‖‖ −
‖‖‖�t − �g

‖‖‖).

(9)rt = (rg)t + (ra)t + (rc)t + (rs)t.

(10)(ra)t =

{
rarr if

‖‖‖�t − �g
‖‖‖ < 0.2

0 otherwise
.

(11)(rc)t =

{
rcol if collision

0 otherwise
.

Fig. 2   Gazebo training environments (left) and corresponding grid 
map displayed by Rviz (right)
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state (three local maps � , local goal �′
g
 and robot velocity 

� ). The action with the maximum Q value will be selected 
and executed by the obstacle avoidance module.

Curriculum Learning

Curriculum learning [32] aims to improve learning perfor-
mance by designing appropriate curriculums for progres-
sive learners from simple to difficult. Elman et al. [33] put 
forward the idea that a curriculum of progressively harder 
tasks could significantly accelerate a neural network’s train-
ing. And curriculum learning has recently become prevalent 
in the machine learning field, which assumes that the cur-
riculum learning can improve the convergence speed of the 
training process and find a better local minimum value than 
the existing solvers. In this work, we use Gazebo simulator 
[34] to build a training world with multiple obstacles. As 
the training progresses, we gradually increase the number of 
obstacles in the environment and also increase the distance 
from the starting point of the target point gradually. This 
makes our strategy training from easy situation to difficult 
ones. At the same time, the position of each obstacle and the 
start and endpoints of the robot are automatically random 
during all training episodes. One training scene is shown 
in Fig. 2a.

Experiments

In this section, we will introduce the experimental setup and 
evaluation in simulation and real environments. We quantita-
tively and comparatively evaluated the DQN-based obstacle 
avoidance policy to show that it is superior to other related 
methods on multiple indicators, robust to sensor noise and 
compatible with different sensors. Moreover, we also per-
formed qualitative tests on real robots, including static obsta-
cles of cardboard boxes and dynamic pedestrian scenarios. 
and also integrated our obstacle avoidance policy into the 
navigation framework for long-range real-world navigation 
testing. It should be noted that we only use global path plan-
ning to provide local target points for our local DRL-based 

obstacle avoidance module in the long-range navigation 
experiment at the end of “Navigation in real world”. In 
other experiments, we only use the local obstacle avoidance 
module to control the robot, that is, there is only one final 
target point.

Reinforcement Learning Setup

The training experiments were performed using a simulated 
differentially driven robot in a simulated virtual environ-
ment using Gazebo. As shown in Fig. 2a, a 180-degree 2D 
laser scanner is installed on the front of the differential drive 
robot. Based on performance and our computing resource 
constraints, the system parameters are empirically deter-
mined as shown in Table 1.

The implementation of our deep neural network is in Ten-
sorFlow, and we trained the deep Q network in terms of the 
objective function (Eq. 7) with Adam optimizer [35]. The 
training hardware is a computer with an i9-9900k CPU and 
a single NVIDIA GeForce 2080 Ti GPU. The entire train-
ing process (including exploration and training time) takes 
about 10 hours to allow the policy to converge to robust 
performance.

Experiments on Simulation Scenarios

Comparative Experiments

To quantitatively compare the performance of our approach 
with other related methods in various test cases, we define 
the following performance indicators for obstacle avoidance 
behavior.

–	 Expected return Er is the average value of the sum of 
each episode’s rewards.

–	 Success rate 𝜋̄ is the probability of the episodes in which 
the robot reaching the goals within a limited step without 
any collisions.

–	 Arrival step s̄ is the average number of steps required to 
successfully reach the target point without any collisions.

Fig. 3   The architecture of our CNN-based dueling DQN network. This network takes three local maps and a vector with a local goal and robot 
velocity as input and outputs the Q values of 28 discrete actions
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–	 Average angular velocity change ▿� is the average value 
of the angular velocity changes for each step, which 
reflects the smoothness of the trajectory.

In the training test, we compared our curricular DQN 
policy with normal (non-curricular) DQN policy and PPO 
with a one-dimensional convolutional network [23]. As 
shown in Fig. 4, our DQN-based obstacle avoidance policy 
has significant improvements over the PPO policy in terms 
of expected return, success rate, arrival step, and average 
angular velocity change, and the curricular DQN policy also 
has slight improvements in multiple indicators. In the tests 
with more obstacles, all trained agents have been tested in 10 
random worlds with 12 random obstacles. Each trained agent 

had to solve 200 static tasks per world. the specific indica-
tors values of various methods are shown in the Table 2. It 
shows that our map-based DQN algorithm is better than PPO 
algorithm with a one-dimensional convolution network in 

Table 1   System parameters Hyperparameter Value Description

Learning rate 5 × 10−4 The learning rate of optimizer
Discount factor 0.99 Discount factor gamma for updating Q-learning
Minibatch size 1024 The number of training cases needed for each random gradient 

descent update was calculated
Replay buffer size 2 × 105 The random gradient descent updates are sampled from this 

number of the buffer
Image size 60 × 60 Length and width of the map image used for training
History length 3 Number of latest frames required for the input of the Q-network
Episode length 300 The longest trajectory length per episode
Initial exploration 1 Initial � in �-greedy exploration
Final exploration 0.1 Final � in �-greedy exploration
Control frequency 5 Control frequency of robot speed command

Fig. 4   Indicator curves of dif-
ferent methods during training. 
Our DQN-based policy has sig-
nificant improvement over PPO 
policy with 1D convolution 
network on multiple indicators

Table 2   Experimental indicators’ values of different methods

Evaluating PPO with Normal Curricular

Indicator 1D conv DQN DQN
E
r

467.87 547.43 617.04
𝜋̄ 0.85 0.91 0.94
s̄ 40.1 27.76 26.13
▿� 0.46 0.39 0.35
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various indicators, and the use of curricular learning tech-
nology will further improve the result. Figure 5 shows a test 
case of our curricular DQN policy in a test scenario.

Robustness to Noise

Figure 6 depicts the performance of our DQN-based policy 
and the traditional vector field histogram (VFH) method 
[36] in the environment with 12 random obstacles as the 
noise error of the laser sensor data. Sensor noise is based 
on Gaussian distribution with a fixed variance. When the 
variance is zero, it means that there is no noise. The results 
show that our DQN-based policy is resilient to noise, and the 
laser noise seriously affects the arrival rate of the traditional 
obstacle avoidance algorithm VFH. This is to be expected 
because traditional obstacle avoidance methods use obsta-
cle clearance to calculate their objective function, and this 
greedy method usually guides the robot to a local minimum. 
Most of the time the robot is stuck somewhere instead of col-
liding with an obstacle. More importantly, the learned policy 
(the DQN policy with noise in the Fig. 6) will work better 
when using the same noise variance as the test environment 
during training, which enables the neural network to learn 
the ability to deal with sensor noise.

Qualitative Experiment

To evaluate the performance of our proposed method in 
more difficult situations, we simulated some test envi-
ronments in the Gazebo simulator. As shown in Fig. 7, it 
includes a simple obstacles environment, random obstacles 
environment, right-angle environment, s-shaped environ-
ment, and u-shaped environment. From the motion trajec-
tory formed by robot footprints in the figures, we can see 
that our learned policy can output relatively successful 
actions in different complex environments. The experi-
mental results show that our dueling DDQN model can 
obtain effective and proper steering commands in more 

difficult situations, which proves its high transferability 
and generalization capability.

Because obstacle avoidance algorithms usually only use 
local perception information, the robot is easy to fall into 
a difficult area (such as a u-shaped environment), which is 
called a local minimum problem [37]. As shown in Fig. 8, 
we also tested the ability of the VFH obstacle avoidance 
algorithm to solve the local minimum problem. Especially 
in the more difficult u-shaped environment (Fig. 8c), the 
robot cannot reach the target point by swinging left and 
right. In practical applications, the local obstacle avoid-
ance algorithm will cooperate with global path planning 
to improve its ability to get out of trouble. Recently, some 
researchers [38] began to explore how traditional plan-
ning algorithms can guide the DRL-based local obstacle 
avoidance algorithm to better navigate. The design of 
other modules of the navigation system can also alleviate 
the local minimum problem caused by the local obstacle 
avoidance algorithm to a certain extent.

Fig. 5   A test result of our cur-
ricular DQN policy in a test 
scenario, the green and red dot 
represents the starting and target 
position, respectively, and the 
robot’s trajectory is marked with 
red arrows

Fig. 6   Success rate over laser noise. DQN policy trained with sensor 
noise compared to policy without sensor noise and traditional VFH 
method
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Compatible with Different Sensors

To prove that our method is compatible with different sen-
sors, we demonstrated a simulation experiment of obstacle 
avoidance based on depth cameras. We simulated a depth 
camera on the robot according to the parameters of Kinect 
sensors. Its horizontal viewing angle is 60 degrees, the clos-
est measurement distance is 0.8 m, the longest measurement 
distance is 4 m, and the resolution of the depth image is 
640 × 480 . We first need to convert the point cloud data 
into our grid map format. We downsample the point cloud 
according to the map resolution, and at the same time filter 

out the point cloud on the ground according to the height, 
and then press down from the top to a two-dimensional flat 
grid map. An example of generating a grid map from point 
cloud data is shown in Fig. 9. Using the grid map generated 
by the point cloud as input, we use our map-based deep 
reinforcement learning method to learn obstacle avoidance 
policies in an environment with seven random obstacles. 
The curve of expected returns rise with the epoch during the 
training process is shown in Fig. 10a. And Fig. 10b shows 
that the robot with a depth camera in the test scene success-
fully avoided the obstacle and reached the endpoint. How-
ever, due to the narrow field of view of the depth camera, the 

Fig. 7   Some simulation experiments, including simple obstacles 
environment (a), random obstacles environment (b, c), right-angle 
environment (d), s-shaped environment (e), and u-shaped environ-

ment (f). The orange rectangles represent the footprints of the robot, 
and the interval between each footprint is 1 s

Fig. 8   Trajectories of robots executing VFH policy in the right-angle environment (a), s-shaped environment (b), and u-shaped environment (c), 
respectively. The blue rectangles represent the footprints of the robot, and the interval between each footprint is one second
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success rate of the test in the environment shown in Fig. 10b 
is only 0.83. In future work, we will use the recurrent neural 
network architecture and increase the state history length 
to increase the success rate of obstacle avoidance using a 
depth camera.

Navigation in Real World

A variety of real-world experiments using our robot chas-
sis are conducted as well to verify the proposed map-based 
DQN model. As shown in Fig. 11, our robot platform is a 
differential wheel robot with a Hokuyo UTM-30LX scan-
ning laser rangefinder and a laptop with an i7-8750H CPU 
and a NVIDIA 1060 GPU. The location and velocity of the 
robot are provided by a state estimator based on particle 
filter. The egocentric local map is constructed by laser meas-
urement and cropped to a fixed size of 6.0 × 6.0 m with a 
resolution of 0.1 m. It is worth mentioning that our dueling 
DDQN model trained in the simulated environment can be 
directly transferred to the real-world environment without 
adjusting any parameters, and well adapt to the unseen sce-
narios by adopting egocentric local maps as the inputs to 
the network.

To illustrate the effectiveness of the proposed map-based 
obstacle avoidance algorithm in a more intuitive way, Fig. 12 
shows eight scene cases before and after the motion of the 
robot, which is controlled based on the output of the DQN 
model. The second frame of each group of images is the 

Fig. 9   Point cloud data (white) 
of the simulated Kinect RGB-D 
sensor (a) and the grid map gen-
erated from the point cloud (b)

Fig. 10   Training curve of 
obstacle avoidance based on 
depth camera (a). A test result 
of our DQN policy with a depth 
camera (b), the robot with a 
depth camera in the test scene 
successfully avoided the obsta-
cle and reached the endpoint

Fig. 11   Our robot chassis with a laptop and a Hokuyo UTM-30LX 
laser scanner
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scene after the robot has taken action against the first scene. 
In the first and second case, the robot successfully avoided 
the right-angle and s-shaped static obstacle environment 
built by cardboard boxes. In the much more constrained 
space shown in Fig. 12c and d, when the robot encounters 
obstacles, the trained policy successfully provided reactive 
action commands and keep the robot away from the obsta-
cles. Figure 12e–g show that the robot successfully avoided 
passing pedestrians. Finally in Fig. 12h, two pedestrians sud-
denly appeared and stayed in front of the robot, and the robot 
successfully changed the original route and bypassed them, 
which indicates the high transferability and effectiveness of 
our proposed obstacle avoidance model.

To further verify the effectiveness of the entire DRL-
based navigation system for long-range navigation, the entire 
navigation system with DRL-based obstacle avoidance is 
also evaluated in large area environments, including both 
long corridor and big hall scenarios. The short-range DRL-
based motion planner directly maps egocentric local grid 
maps to robot’s control commands in terms of intermedi-
ate goals provided by the global A ∗ path planner. In the 
navigation procedure, each local goal position is selected 
as a position that is 3 m away from the robot on the global 
planned path. Five examples in corridor environments are 
described in Fig. 13a–e. The robot set off from one end of 
the corridor, successfully avoided static carton obstacles 

Fig. 12   Robot test of obstacle avoidance module, including right-angle (a) and s-shaped environment (b), discrete random obstacles environment 
(c, d). And the robot successfully avoided passing pedestrians (e, f, g) and sudden still pedestrians (h)
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and dynamic pedestrians, and reached the target point at the 
other end of the corridor. Similarly, in a dynamic and open 
lobby environment (Fig. 13f–j), the robot took the action 
output by the DQN network and successfully reached the 
endpoint several tens of meters away.

A video of simulated and real-world navigation experi-
ments can be found at https://​youtu.​be/​Eq4Aj​sFH_​cU. 
The experimental results show that our proposed map-
based DQN model trained in the virtual environment can 
be directly transferred to various simulated and real-world 
unseen environments without adjusting any parameters.

Conclusion

In this paper, we propose an end-to-end deep reinforcement 
learning method for mobile robot navigation with map-
based obstacle avoidance, which directly maps egocentric 
local grid maps to an agent’s steering commands in terms 
of the target position and movement velocity. Our approach 
is mainly based on dueling double DQN with the prioritized 
experienced replay, and integrate curriculum learning tech-
niques to further enhance our performance. It is worth men-
tioning that our proposed map-based DQN model trained in 
the simulated environment can be directly transferred to var-
ious real-world unseen environments without adjusting any 
parameters due to the high fidelity of the local grid maps.

Our proposed model was evaluated in multiple vir-
tual environments and compared with related works. The 
experimental results show the outstanding performance 
of our proposed method in terms of expected return, suc-
cess rate, arrival step as well as average angular velocity 

change. Furthermore, many real-world scenarios were built 
to evaluate our proposed model, including static obstacles 
of cardboard boxes and dynamic pedestrian scenarios. The 
experimental results show that our dueling DDQN model 
can effectively output proper steering commands in static 
and dynamic environments, which indicates the high trans-
ferability and effectiveness of our proposed obstacle avoid-
ance model. Finally, we integrated our obstacle avoidance 
policy into the navigation framework for long-range naviga-
tion testing. Our mobile robot successfully avoided obstacles 
and pedestrians and reached a target point tens of meters 
away in the corridor and lobby scenarios.

Our future work intends to extend our map-based deep 
reinforcement learning approach for multi-robot collision 
avoidance in a distributed and communication-free environ-
ment, use other multi-sensor fusion solutions to take advan-
tage of our map-based method, and utilize other position-
ing methods (such as UWB technology or visual SLAM) to 
solve the error-prone problem of laser positioning in dense 
environments.
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Fig. 13   Long-range experiments in the corridor (a–e) and lobby (f–j). The robot successfully avoided obstacles and pedestrians and reached a 
target point tens of meters away
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