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 A B S T R A C T

Improving the automation of wheeled loaders is key to solving labor gaps and boosting safety in construction. 
This paper proposes an automatic shoveling system for unmanned loaders that, for the first time, balances 
safety, robustness, efficiency, and energy consumption. The system features automatic calibration of camera 
and light detection and ranging (LiDAR) using large segmentation models and nonlinear optimization, ensuring 
stability despite vibrations. A lightweight neural network performs semantic segmentation, and multi-frame 
point clouds are fused with a confidence algorithm for accurate pile segmentation. The shoveling point 
selection algorithm integrates semantic and elevation data to prioritize loader and environmental safety. 
Volume prediction initiates scooping, and a shoveling strategy balances robustness and efficiency. Extensive 
field tests conducted over two months with two types of loaders in three scenarios, totaling 2090 operations, 
demonstrate the system’s long-term stability, high bucket full rates, efficiency matching manual operations, 
and an 11% reduction in energy consumption. These results highlight the system’s potential to transform 
automated construction machinery.
1. Introduction

The wheel loader is a pivotal asset in construction and a multitude 
of industries, owing to its adaptability (Frank et al., 2018). Nonetheless, 
conventional manual operation encounters several obstacles. Operating 
a wheel loader demands a high level of skill, with operators needing 
to frequently alternate between moving forward and backward while 
controlling the mechanical arm (Zauner et al., 2020). The demanding 
workload makes it difficult for drivers to sustain high-quality and effi-
cient performance over extended periods (Nezhadali et al., 2016; Frank 
et al., 2012; Zhang et al., 2021). Consequently, there is a diminishing 
interest among younger generations to pursue this career, resulting in 
a labor shortage (Agrawal et al., 2023). In the specialized scenarios 
such as mining, workers must wait until the dust from explosions 
has settled to safe levels before they can safely enter the work area, 
which greatly diminishes productivity (Cardenas et al., 2023). Although 
remote control technology has been integrated into the construction 
machinery sector, it remains in its infancy (Lee et al., 2022). Challenges 
like network latency and the absence of sensory feedback from the field 
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regarding acceleration, vibrations, and depth can affect the accuracy 
and efficiency of remote operations, potentially posing safety haz-
ards (Dadhich et al., 2018; You et al., 2023). Therefore, enhancing the 
automation of wheel loaders is essential for alleviating labor shortages, 
increasing production efficiency, and improving safety.

Automatic shoveling system is a key component of loader automa-
tion, directly affecting task success rates, operational efficiency and 
energy consumption (Filla et al., 2014). Generally, the automatic shov-
eling process primarily consists of four steps: perceiving information 
about the material pile, selecting suitable shoveling points, determining 
the appropriate timing for scooping, and controlling the mechanical 
arm to complete the loading process (Almqvist, 2009; Hemami and 
Hassani, 2009). However, automatic shoveling systems are still in the 
early stages of commercial application (Dadhich et al., 2016; Fernando 
and Marshall, 2020), and existing technologies face many challenges 
in perception and interaction with irregular piles, such as unstable 
perception outcomes, unreasonable shoveling point selection, and in-
adequate scooping action choices. Thus, optimizing various aspects of 
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the automatic shoveling process is essential to advance the practical 
application of unmanned loaders.

Perceiving the information of the material pile is a crucial initial 
step. Compared to human operators, unmanned systems face significant 
challenges in real-time acquisition of target pile information and extrac-
tion of effective features (Chen et al., 2024). Current mainstream per-
ception schemes are primarily categorized into two classes: site-based 
fixed sensing and loader-based onboard sensing. In the domain of site-
based fixed sensing, Kamari and Ham (2021) proposed an automated 
approach integrating deep learning with multi-view 3D reconstruction. 
By employing point cloud semantic segmentation and meshing-based 
volume calculation, their method achieves accurate volume measure-
ment of material piles at construction sites. Xu et al. (2022, 2024) 
developed a sliding system based on the integration of a multi-echo 
scanner and a rangefinder for automated real-time inventory of in-
dustrial stockpiles in indoor environments. Coupled with timestamp 
synchronization and coordinate calibration algorithms, it generates 
high-precision 3D point clouds of the pile surface, with volume cal-
culated via a slicing integration method. This type of scheme provides 
comprehensive, stable, and clear observational coverage, yielding more 
complete perceptual information. However, its drawbacks include the 
necessity for site modification, leading to high hardware installation 
and maintenance costs. More critically, transforming the perceived 
shovel point coordinates from the fixed sensor coordinate system to 
the robot’s native frame can introduce significant calibration and reg-
istration errors (Gu et al., 2025). In terms of onboard sensing, Sarata 
et al. (2008) conducted pioneering research on vehicular measurement 
systems, developing an automatic loading system for wheel loaders 
based on a stereo vision system to dynamically detect and update pile 
geometry. Koyachi and Sarata (2009) focused on perception solutions 
for unmanned loaders, employing an onboard stereo vision system 
(dual CCD cameras) to capture real-time images of the pile for generat-
ing 3D point cloud models. Such systems offer advantages including 
high integration, ease of deployment without site modification, and 
convenient setup. Nonetheless, their perceptual field of view is highly 
susceptible to changes in the loader’s posture, prone to resulting in 
observational blind spots. Moreover, the intense vibrations and im-
pacts during loading operations make it difficult to maintain long-term 
stability of the sensor extrinsic calibration parameters, severely com-
promising perception accuracy. To address the limited sensing range of 
a single sensor, Chen et al. (2024) experimented with deploying five 
LiDAR units on top of the loader cabin. While this dense configuration 
enhances perceptual coverage, it concurrently introduces substantial 
calibration costs, accumulated errors, and significant computational 
overhead. It is particularly noteworthy that although LiDAR has be-
come a mainstream choice for environmental perception due to its 
excellent performance in capturing depth and scale information, it 
inherently lacks the ability to perceive environmental texture features. 
Consequently, some studies (Chen et al., 2022a) have incorporated 
visual sensors to achieve finer material discrimination through im-
age segmentation. However, vision-based methods remain vulnerable 
to variations in ambient lighting conditions, and their robustness in 
practical industrial settings still requires further improvement.

Secondly, selecting and calculating the appropriate shoveling point 
is another challenge for automatic shoveling systems. Research in-
dicates that the shoveling direction should be perpendicular to the 
convex surface of the material pile (Lindmark and Servin, 2018). If 
the shoveling direction significantly deviates, the moments on either 
side of the bucket centerline will become asymmetric, leading to load 
imbalance on the bucket linkage mechanism and potentially causing 
overturning (Sarata, 2006). Sarata (2006) and Sarata et al. (2008) 
employed a columnar model to characterize the material pile and cal-
culated the resistance exerted by the material on the bucket at various 
points, considering the bucket’s trajectory, to determine the direction 
of the shoveling point that offered the most balanced force distribution. 
2 
However, this method relies heavily on a single criterion and is contin-
gent upon the accuracy of the complete three-dimensional perception 
of the material surface. To mitigate the dependence on the precision 
of surface perception, Magnusson and Almqvist (2011) conducted a 
quadratic surface fitting on local material surface perception informa-
tion to estimate local convexity and sideload characteristics. Chen et al. 
(2024) proposed a shoveling point selection scheme that integrates 
four indicators: convexity, inclination, slope, and distance traveled, 
further enriching the selection criteria for shoveling points. Neverthe-
less, current research primarily focuses on the safety implications of 
the material pile on the loader’s shoveling process, without adequately 
addressing the potential safety hazards that the loader may pose to 
the surrounding environment during operation. Materials are often 
indiscriminately piled in open production environments, necessitat-
ing that automated shoveling systems have a more comprehensive 
understanding of the environment surrounding the material pile.

After identifying the optimal shoveling point, the loader must con-
trol the bucket to glide along the ground and approach the material 
pile. Upon the bucket’s penetration into the pile, the automated system 
must determine the appropriate moment to initiate control over the 
bucket and boom to execute the scooping process, which constitutes 
another complex challenge for automatic shoveling systems. Existing 
studies predominantly employ threshold control strategies based on 
passive signal triggering. For instance, Chen et al. (2024) utilized 
changes in boom cylinder pressure as a control signal, while Cao 
et al. (2023b,a) adopted differences in tire speed and engine torque 
fluctuations as triggering thresholds, respectively. These thresholds are 
typically determined empirically through experimentation to initiate 
the boom movement for loading operations. However, when the loader 
approaches material piles with varying shapes and properties under 
different working conditions, the dynamic responses can differ signifi-
cantly, resulting in poor adaptability of fixed thresholds (Yang et al., 
2025a; Yang, 2025; Yang et al., 2025b). Excessively low threshold 
settings may cause premature triggering, reducing bucket fill factor; 
whereas overly high thresholds can lead to delayed activation, not only 
increasing energy consumption (Yao et al., 2023) but also potentially 
causing tire slippage or even equipment damage (Fernando et al., 2018; 
Wu, 2003). More fundamentally, such passive triggering mechanisms 
rely on lagging system response signals and fail to base decisions on 
the real-time volume of material being crowded during the loading 
process. For piles with irregular shapes, such as low-lying piles, it is 
challenging to ensure a stable bucket fill rate. To address this, Sarata 
(2006) and Magnusson and Almqvist (2011) proposed active triggering 
approaches based on perceived material volume, dynamically initiating 
the scooping action by evaluating the displaced material volume in 
real time. However, current methods still exhibit two major limitations: 
first, they do not adequately account for the inherent motion delay 
characteristics of hydraulic systems (Dadhich et al., 2019); second, 
they rely solely on instantaneous material volume for decision-making 
without incorporating predictive mechanisms to estimate future states, 
consequently restricting real-time control accuracy.

Upon determining the optimal timing for initiating the scooping 
action, the selection of an appropriate scooping strategy remains a 
complex challenge. Filla et al. (2014) systematically categorized four 
primary strategies employed in scooping operations. Among these, 
two have gained prominent adoption in both academic and industrial 
contexts: the ‘‘Just in & out’’ strategy and the ‘‘Stairway’’ strategy. The 
‘‘Just in & out’’ strategy, as implemented by Chen et al. (2024) and 
further validated in studies such as Chen et al. (2022b, 2023), utilizes 
a single, continuous motion sequence. This approach is characterized 
by its operational simplicity and high efficiency, making it partic-
ularly suitable for handling easily scoopable materials. However, Li 
et al. (2021) demonstrated that when encountering dense or highly 
compacted piles, this method is susceptible to bucket stalling, which 
significantly reduces scooping efficiency and may lead to operational 
failure. In contrast, the ‘‘Stairway’’ strategy, extensively investigated 
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by Cao et al. (2023a,b), employs a multi-phase cutting process that 
progressively engages the pile surface to reduce digging resistance. 
This method proves more effective in challenging material handling 
conditions, albeit at the cost of increased cycle time and higher energy 
consumption, as quantified in earlier work by Filla et al. (2005). Cur-
rent research efforts often concentrate on optimizing a single strategy 
in isolation. Consequently, as highlighted by Aoshima et al. (2023) and 
further supported by Eriksson et al. (2024a), autonomous shoveling 
systems struggle to maintain a robust balance between operational 
reliability, efficiency, and energy consumption across varied material 
properties and dynamic working environments. Furthermore, prevail-
ing technologies predominantly prioritize achieving a high bucket fill 
rate, while neglecting precise volumetric control of the scooped ma-
terial. The capability to accurately regulate the loaded volume would 
not only optimize material handling time and prevent overflow during 
transport but also enable critical applications requiring precise mixture 
ratios of multiple material types.

To address the challenges faced during various stages of automatic 
shoveling, this paper proposes a low-cost, onboard sensor-based au-
tomatic shoveling system. To ensure the long-term stability of sensor 
fusion under the severe vibration conditions of construction machinery, 
a self-supervised adaptive automatic calibration method for cameras 
and LiDAR is employed, based on the large-scale neural network model 
SAM (Kirillov et al., 2023). By integrating sparse historical informa-
tion from multiple frames of fewer LiDAR sensors, real-time elevation 
map (Miki et al., 2022) reconstruction of large-scale piles is achieved. 
And a real-time semantic segmentation model suitable for the working 
environment of loaders is trained. This fusion of semantic and elevation 
information enables robust and precise pile surface segmentation under 
various environmental interferences. An algorithm for selecting shov-
eling points is proposed, considering both loader and environmental 
safety. Additionally, unlike passive triggering methods based on hy-
draulic pressure changes, scooping actions are triggered by material 
volume, using a data-driven approach to predict the future state of the 
scooping process and account for hydraulic delay characteristics. An 
adaptive scooping algorithm is designed to select appropriate strategies 
based on actual working conditions and adjust in real-time based on 
perceived volume feedback. The proposed system has been extensively 
validated through 2090 large-scale real shoveling tasks on various fuel 
and electric loaders, demonstrating long-term stability and significant 
advantages. To the best of the authors’ knowledge, this is the first 
method capable of simultaneously considering long-term robustness, 
efficiency, and energy consumption in actual open production envi-
ronments, highlighting its importance for the research and application 
of automatic construction machinery. A demonstration video can be 
found at https://youtu.be/uHHbI35hjsY. In summary, the contributions 
of this paper include:

• Proposing the first complete automatic shoveling system suit-
able for open production scenarios, addressing efficiency, energy 
consumption, safety, and robustness simultaneously.

• Introducing a self-supervised camera–laser automatic calibration 
method based on the large model SAM and a probability fusion 
method for material surface perception based on semantics and 
elevation confidence, achieving precise and robust segmentation 
of the material surface.

• Designing a shoveling point selection algorithm that considers 
semantic information from the semantic elevation map, ensuring 
both loader and environmental safety.

• Predicting the future state of the scooping process using a data-
driven approach to enable timely triggering of scooping actions 
despite hydraulic delays. An adaptive scooping algorithm based 
on shoveling volume feedback further enhances efficiency and 
reduces energy consumption.
3 
• Demonstrating the system’s long-term stability and leadership 
through extensive testing in multiple real mixing plant scenar-
ios with various types of loaders, achieving efficiency compara-
ble to skilled human operators while reducing average energy 
consumption by 11%.

The main contents are as follows. Section 2 outlines the components 
of our automatic shoveling system, and then Sections 3–6 explain 
in detail the principles and methods of calibration, pile perception, 
shoveling point decision, and shoveling control strategy, respectively. 
Section 7 presents the implementation of the experiments, data collec-
tion, and results analysis. Section 8 addresses the identified limitations 
and suggests avenues for future research. A concluding summary of the 
study is provided in Section 9.

2. System overview

The overall framework of the proposed automatic shoveling system 
is illustrated in Fig.  1, which is primarily composed of three parts: 
the establishment of the semantic elevation map, the selection of 
shoveling points, and the execution of shoveling actions. Specifically, 
A precise calibration technique based on nonlinear optimization has 
been developed for the kinematics of the arm, integrated with Inertial 
Measurement Unit (IMU) sensors to achieve real-time perception and 
precise control of the bucket’s attitude. Specifically, two types of LiDAR 
sensors are employed: a 3D LiDAR, which is integrated with an Inertial 
Measurement Unit (IMU) using Simultaneous Localization and Mapping 
(SLAM) technology (Shan et al., 2020) to achieve real-time localization 
of the loader and provide long-range panoramic perception; and a 
solid-state LiDAR dedicated to short-range forward perception. The 
perception data from both sensors are fused to construct a compre-
hensive environmental model. By integrating multi-source, multi-frame 
point cloud data from these LiDAR sensors, an elevation map-based 
environmental perception model is constructed. Additionally, a novel 
semantic segmentation model based on a single monocular camera 
and deep neural networks has been utilized to achieve semantic cog-
nition in complex operating scenarios of the loader. After calibration 
of the LiDAR and camera, semantic information can be combined 
with the elevation map, and an overall semantic elevation map is 
formed through a confidence-based fusion algorithm, enabling precise 
segmentation of the pile surface. Subsequently, each position and angle 
on the pile surface line are comprehensively evaluated based on the 
pile elevation map to determine suitability for shoveling. Finally, the 
vehicle approaches the pile based on the location of the shoveling 
point, during which the loader predicted the shoveling volume in real-
time to determine the moment for executing the scooping action. Once 
the predicted scooping volume reaches the desired volume, the loader 
autonomously selects an appropriate scooping strategy based on the 
material type and vehicle operating conditions, with the option for 
closed-loop feedback if necessary.

3. Sensor configuration and calibration

As shown in Fig.  2, to provide the automatic shoveling system with 
real-time and necessary joint state of the loader and environmental 
information, a variety of sensors have been installed on different parts 
of the loader. Three IMU sensors are placed on the cab, boom, and 
bucket, respectively, to obtain real-time attitude information of the 
loader body and arm. The steering encoder is mounted at the pivot 
points of the front and rear chassis to capture steering angle infor-
mation. Additionally, environmental perception equipment has been 
mounted on the top of the cab, including a wide-angle monocular 
camera and a solid-state laser sensor that form the forward perception 
module, as well as a 16-line LiDAR for perception and localization. 
The solid-state laser effectively compensates for the sparsity of forward 
close-range material surface perception data associated with the 16-line 
LiDAR. This setup achieves a balance between performance and cost 
efficiency.

https://youtu.be/uHHbI35hjsY
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Fig. 1. Framework of the proposed automatic shoveling system for unmanned loaders.
Fig. 2. The key sensor configurations involved in the automatic shoveling 
system of unmanned loaders.

3.1. Kinematic calibration of the arm

The main components of the loader arm can be simplified to rigid 
links, with joints represented as hinges (as illustrated in Fig.  3). The 
coordinate system 𝑀 is defined at the pivot point of the arm, with 
the 𝑥-axis aligned horizontally towards the front of the vehicle. Point 
𝐴 represents the rotational point of the bucket, and 𝐵(𝑥𝑏, 𝑧𝑏) denotes 
the tip of the bucket teeth. Thus, the angles (𝜑1, 𝜑2) between the boom 
and bucket and the loader arm coordinate system 𝑀 are determined as 
follows: 
{

𝜑1 = 𝜃2 − 𝜃1 + 𝛼1
𝜑2 = 𝜃3 − 𝜃1 + 𝛼2

(1)

Here, (𝜃1, 𝜃2, 𝜃3) correspond to the measurements obtained from the 
IMU sensors, and the parameters 𝛼1 and 𝛼2 denote the offset angles 
between the IMU sensors and the arm linkages. Since the IMU sensors 
4 
Fig. 3. The kinematic model of the loader arm, where 𝑀 is the coordinate 
system of the loader arm.

are rigidly attached to the arm assembly, 𝛼1 and 𝛼2 are constants. Con-
sequently, the kinematic equations of the loader arm can be expressed 
as: 
{

𝑥𝑏 = 𝑙1 cos𝜑1 + 𝑙2 cos𝜑2

𝑧𝑏 = 𝑙1 sin𝜑1 + 𝑙2 sin𝜑2
(2)

Concurrently, an accurate calibration method is proposed by min-
imizing the error between the measured displacement of the bucket 
endpoint and the calculated displacement to accurately determine the 
model parameters (𝑙1, 𝑙2, 𝛼1, 𝛼2). During the calibration phase, the end-
point of the bucket linkage is controlled to various positions (𝑥𝑖, 𝑧𝑖), 
where 𝑖 ∈ [1, 𝑛], and subsequently measure the positional changes 
(𝛥𝑥𝑖𝑗 , 𝛥𝑧𝑖𝑗 ) at these points. By integrating the IMU sensor readings at 
two distinct positions, 𝜗𝑖 = (𝜃𝑖1, 𝜃

𝑖
2, 𝜃

𝑖
3) and 𝜗𝑗 = (𝜃𝑗1, 𝜃

𝑗
2, 𝜃

𝑗
3), two residual 

terms can be constructed: 
{

𝑅𝑥
𝑖𝑗 = ‖𝛥𝑥𝑖𝑗 − (𝑥𝑏(𝜗𝑖) − 𝑥𝑏(𝜗𝑗 ))‖2

𝑅𝑧
𝑖𝑗 = ‖𝛥𝑧𝑖𝑗 − (𝑧𝑏(𝜗𝑖) − 𝑧𝑏(𝜗𝑗 ))‖2

(3)

where (𝑥𝑏(𝜗𝑖), 𝑧𝑏(𝜗𝑖)) and (𝑥𝑏(𝜗𝑗 ), 𝑧𝑏(𝜗𝑗 )) are the positions calculated 
based on the arm model (Eqs.  (1) and (2)) and are functions of 
(𝑙 , 𝑙 , 𝛼 , 𝛼 ). The optimization problem is formulated as follows, and 
1 2 1 2
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Fig. 4. Framework of the proposed camera and LiDAR extrinsic calibration method. Right: initial calibration with custom board. Left: automatic calibration 
during operation with SAM and nonlinear optimization.
stochastic gradient descent is employed to solve this problem. 

min
𝑙1 ,𝑙2 ,𝛼1 ,𝛼2

𝑛−1
∑

𝑖=1
(𝑅𝑥

𝑖,𝑖+1 + 𝑅𝑧
𝑖,𝑖+1)

s.t. 𝑙1 > 0, 𝑙2 > 0
−𝜋 < 𝛼1, 𝛼2 < 𝜋

(4)

Note that the calibration method only requires the measurement 
of the bucket teeth’s displacement, without the need to measure the 
absolute coordinates at each position. Since the objective function 
in Eq.  (4) is convex, the optimization process is insensitive to initial 
values. Thus, the initial parameters can be arbitrarily chosen within the 
ranges 𝑙1 > 0, 𝑙2 > 0,−𝜋 < 𝛼1, 𝛼2 < 𝜋. The optimization methods above 
are implemented using the Ceres Solver library (Agarwal et al., 2023) 
with the Levenberg–Marquardt algorithm. The solver is considered to 
have converged to a stable point when the infinity norm of the gradient 
vector at the current parameter point decreases to below or equal to 
1e−10. The larger the dataset, the more residual terms can be con-
structed, and the more accurate the results will be. Typically, to solve 
for the model parameters, at least four sets of residual terms are needed, 
i.e., 𝑛 ≥ 3. Once the parameters (𝑙1, 𝑙2, 𝛼1, 𝛼2) are determined, the real-
time estimation of the bucket’s pose can be achieved by combining the 
loader’s kinematic model with the inclination readings from the IMU 
sensors.

3.2. Calibration of the perception module

The forward perception module of the automatic shoveling system 
integrates a monocular camera and LiDAR. To fuse their data for a high-
precision semantic elevation map, spatial alignment between the two 
sensors via extrinsic calibration is essential. This process determines 
the transformation matrix between the camera and LiDAR coordinate 
systems. Since intense loader vibrations can cause calibration shifts, 
and frequent manual recalibration is impractical in production, an 
autonomous calibration technique is critically needed.

As illustrated in Fig.  4 and Algorithm 1, the calibration method 
consists of two steps. The first step employs a method based on artificial 
calibration boards (𝑙𝑙.1–4), which is typically conducted prior to the 
installation of the forward perception module onto the vehicle. As 
shown in the right image of Fig.  4, each calibration board features four 
square holes that can be easily detected by LiDAR and image corner 
extraction algorithms. By leveraging the detected 2D–3D correspon-
dences, high-precision calibration results can be achieved according to 
the method mentioned in Liu (2023). The second step leverages the 
environmental automatic segmentation capabilities of the large-scale 
neural network model SAM and, based on the initial values obtained 
from the first step, employs nonlinear derivative-free optimization to 
5 
achieve automatic extrinsic calibration (𝑙𝑙.6–27). This step does not 
require specific calibration boards or manual intervention and allows 
for the calibration of parameters between the camera and LiDAR at 
any time during vehicle operation. The specific method is described 
as follows:

Firstly, for each frame of image information, the SAM model is used 
to generate masks for the entire image. Each mask is a binary matrix of 
the same size as the image, where the value 𝑀𝑖(𝑢, 𝑣) ∈ {0, 1} indicates 
whether the pixel (𝑢, 𝑣) belongs to the 𝑖th mask. All pixels within a mask 
can be denoted as 𝑃𝑖 = {𝑝|𝑀𝑖(𝑝𝑢, 𝑝𝑣) = 1}.

Subsequently, the point cloud data is analyzed to obtain the posi-
tional information, normal vectors, reflectivity, and segment class of 
each point 𝑝. The 3D point cloud data is then projected onto the 2D 
image plane: 

𝜆
⎛

⎜

⎜

⎝

𝑝𝑢
𝑝𝑣
1

⎞

⎟

⎟

⎠

= 𝐾𝑇

⎛

⎜

⎜

⎜

⎜

⎝

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

⎞

⎟

⎟

⎟

⎟

⎠

(5)

where 𝐾 represents the intrinsic parameters of the camera, and 𝑇
denotes the transformation matrix from the camera coordinate system 
to the LiDAR coordinate system. The consistency score 𝜖 of the 𝑖th mask 
is defined as follows: 
𝜖𝑖 = (𝜔𝑅𝐹𝑅(𝑃𝑖) + 𝜔𝑁𝐹𝑁 (𝑃𝑖) + 𝜔𝑆𝐹𝑆 (𝑃𝑖))𝑓 (‖𝑃𝑖‖) (6)

Here, 𝐹𝑅(⋅), 𝐹𝑁 (⋅), and 𝐹𝑆 (⋅) represent the consistency scores for 
reflectivity, normal vectors, and segmentation class, respectively. The 
reflectivity consistency score is calculated from the variance of the 
reflectivity values across all points (𝑙. 20), the normal vector consis-
tency score is derived from the mean of the pairwise inner products 
of all normal vectors (𝑙. 21), and the segmentation class consistency 
score is based on the weighted sum of the number of points within 
each category (𝑙. 22). 𝜔𝑅, 𝜔𝑁 , and 𝜔𝑆 are their respective weights, 
and 𝑓 (⋅) is an adjustment function that accounts for the size of the 
point set, designed to mitigate consistency loss that may arise from an 
overabundance of points.

The final optimization goal can be expressed as the weighted sum 
of the consistency scores of all masks: 

𝜌 =
∑

𝑖
𝜔𝑖𝜖𝑖, 𝜔𝑖 =

‖𝑃𝑖‖
∑

𝑗 ‖𝑃𝑗‖
(7)

The optimization problem aimed at maximizing the score 𝜌, with the 
extrinsic parameter 𝑇  as the variable, is solved using the Nelder–Mead 
algorithm (Luo et al., 2024) , with convergence triggered when the 
standard deviation of simplex function values drops below 1e−10 and 
the maximum simplex edge length falls below 1e−8. Given the highly 
nonlinear and discontinuous nature of the problem, the initial estimate 
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Fig. 5. The semantic elevation map of pile perception contains six layers 
of information. The bottom two layers represent the estimated height and 
estimation error obtained from the fusion of multiple frames of LiDAR data. 
The middle three layers represent the probability confidence of piles, ground, 
and obstacles obtained from the semantic segmentation model. The top layer 
represents the category information jointly determined by the fusion of seman-
tic information and elevation information.

from the first-step calibration using a calibration board is used as the 
starting point for the optimization.

4. Pile perception

Accurate perception of the pile surface is essential for selecting 
shoveling points and performing scooping actions. To better represent 
the environment, an elevation map is used to store both category and 
3D information per cell, across six layers (see Fig.  5). Multi-frame 
LiDAR data are first fused to build the elevation map, providing an 
estimated height and variance per cell. A semantic segmentation model 
then classifies pixels and projects the results into 3D space, yielding 
confidence values for each category, namely pile confidence, ground 
confidence, and obstacle confidence, per cell. These confidences are 
fused to determine the final semantic classification, as shown in the 
Semantics layer of Fig.  5. Finally, all cells classified as pile are extracted 
to generate the pile elevation map.

4.1. Material surface mapping

The elevation grid map uses sampled points to represent the envi-
ronment and supports multi-frame and multi-sensor fusion. Each cell in 
this 2.5D map stores height information at its location, offering richer 
environmental representation than 2D maps with lower computational 
and memory costs than 3D voxel grids. To build a real-time accurate 
elevation map, point cloud data are first preprocessed to remove points 
occluded by the vehicle. The loader’s occupied area is abstracted as two 
rectangles rotating around the steering axis, with positions calculated 
from the steering encoder’s real-time readings. Considering the influ-
ence of arm posture changes on the occupied area, the length of the 
front part is determined using the tip position from Eq.  (2).

The elevation map is updated by fusing multiple LiDAR scans. 
Limited field of view in a single frame (Fig.  6(a)) makes multi-frame 
fusion with localization essential for a consistent global map. Each grid 
height is updated via the Kalman filter formula: 

ℎ+ =
𝜎2𝑝ℎ

− + 𝜎2−𝑚 𝑝𝑧
𝜎2−𝑚 + 𝜎2𝑝

, 𝜎2+𝑚 =
𝜎2−𝑚 𝜎2𝑝

𝜎2−𝑚 + 𝜎2𝑝
(8)

Here, ℎ represents the estimated height of the cell, 𝑝𝑧 is the height 
measurement of the point, 𝜎2𝑚 is the estimated variance of the cell, 
which is initially assigned a large value to reflect a high level of 
uncertainty. 𝜎2𝑝 is the variance estimated by the sensor noise model, 
which is set as 𝜎2𝑝 = 𝛼𝑑𝑑2, where 𝛼𝑑 is a tunable parameter and 𝑑 is the 
distance from the point to the sensor. The estimates before updating 
are denoted with a superscript ‘−’, while the updated data is denoted 
with a superscript ‘+’.
6 
Algorithm 1 Automatic Camera–LiDAR Extrinsic Calibration
Require: Image 𝐼 , Point cloud 𝑃 , Initial extrinsic 𝑇0, SAM model
Ensure: Optimized extrinsic parameters 𝑇 ∗

1: // Step 1: Initial calibration (pre-deployment)
2: Acquire calibration board data (𝐼𝑏𝑜𝑎𝑟𝑑 , 𝑃𝑏𝑜𝑎𝑟𝑑 )
3: Detect 2D corners in 𝐼𝑏𝑜𝑎𝑟𝑑 and 3D corners in 𝑃𝑏𝑜𝑎𝑟𝑑
4: Compute 𝑇0 using (Liu, 2023)’s method
5:
6: // Step 2: Online auto-calibration
7: for each new frame (𝐼, 𝑃 ) do
8:  // 2.1 Image segmentation via SAM
9:   ← SAM(𝐼) ⊳  = {𝑀1, ...,𝑀𝑘}
10:  // 2.2 Project all points to image plane
11:  𝑃proj ← ProjectPoints(𝑃 , 𝑇0, 𝐾) ⊳ Project to 2D coordinates
12:  // 2.3 Process each mask and compute consistency
13:  for each mask 𝑀𝑖 ∈  do
14:  // Select points projected inside mask 𝑀𝑖
15:  𝑃𝑖 ← {𝑝 ∈ 𝑃 ∣ proj(𝑝) ∈ 𝑀𝑖}
16:  if |𝑃𝑖| < threshold then
17:  continue ⊳ Skip masks with insufficient points
18:  end if
19:  // 2.4 Multi-modal consistency evaluation
20:  𝑟𝑖 ← Var({𝑝.𝑟 ∣ 𝑝 ∈ 𝑃𝑖}) ⊳ Reflectivity consistency
21:  𝑛𝑖 ← Mean({⟨𝑝.𝑛, 𝑝′.𝑛⟩ ∣ 𝑝, 𝑝′ ∈ 𝑃𝑖}) ⊳ Normal consistency
22:  𝑠𝑖 ← Entropy({Class(𝑝) ∣ 𝑝 ∈ 𝑃𝑖}) ⊳ Segmentation 

consistency
23:  𝜖𝑖 ← (𝜔𝑅𝑟𝑖 + 𝜔𝑁𝑛𝑖 + 𝜔𝑆𝑠𝑖) ⋅ 𝑓 (|𝑃𝑖|)
24:  end for
25:  // 2.5 Nonlinear derivative-free optimization
26:  𝑇 ∗ ← argmax𝑇

∑

𝑖
|𝑃𝑖|

∑

𝑗 |𝑃𝑗 |
𝜖𝑖(𝑇 )

27:  Solve using the Nelder–Mead algorithm (Luo et al., 2024) with 
𝑇0 as initial guess

28: end for

Fig. 6. Process of the material surface mapping. (a) shows the range that a 
single-frame LiDAR sensor can perceive. (b) displays the perception range after 
multi-frame data fusion. (c) shows the result of the elevation map after hole 
filling. (d) presents the final established elevation map.

To clear dynamic obstacles, the system checks if a ray passes 
through a cell by comparing the ray height with the cell’s estimated 
height. If a point’s height 𝑝𝑧𝑖  is below the lower confidence bound ℎ𝑖−𝜎𝑖
of the elevation map at that point, the cell is marked as penetrated and 
the obstacle is cleared. In scenarios with large map boundaries and high 
piles, LiDAR occlusion can cause holes in the elevation map (Fig.  6(b)). 
Assuming pile continuity, each hole point 𝑝𝑖(𝑥𝑖, 𝑦𝑖) is assigned the height 
of its nearest neighbor (as illustrated in Fig.  6(c)): 

ℎ[𝑥 , 𝑦 ] = ℎ[argmin((𝑥 − 𝑥 )2 + (𝑦 − 𝑦 )2)] (9)
𝑖 𝑖 𝑖 𝑖
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where ℎ[𝑥𝑖, 𝑦𝑖] is the height value of the point (𝑥𝑖, 𝑦𝑖). Each hole-filling 
operation is independent and can be efficiently parallelized on the GPU.

4.2. Semantic segmentation

To endow loaders with real-time environmental perception capabil-
ities, semantic segmentation models need to balance high performance 
and lightweight characteristics on edge computing devices. Traditional 
Convolutional Neural Networks (CNNs) have somewhat limited capa-
bilities in integrating global information, but their structure is partic-
ularly suitable for parallel computation, making them advantageous 
for deployment on ARM platforms. On the other hand, Vision Trans-
formers (ViT) are more conducive to integrating global information 
and achieving higher accuracy, but they are not suitable for edge 
computing. To achieve faster inference speeds while ensuring accuracy, 
we employ the TokenPyramid Vision Transformer (TopFormer (Zhang 
et al., 2022)) architecture for semantic segmentation, which combines 
the high performance of CNNs with the high accuracy of transformer 
structures, demonstrating excellent performance on edge computing 
devices.

The TopFormer network architecture consists of the Token Pyra-
mid Module, Semantics Extractor, Semantics Injection Module, and 
Segmentation Head. The Token Pyramid Module, built upon the CNN 
framework, processes high-resolution images to quickly generate a local 
feature pyramid. Capitalizing on the lightweight nature and efficiency 
of CNNs in encoding local image details, the Token Pyramid Module 
employs stacked lightweight MobileNetV2 (Sandler et al., 2018) blocks 
and rapid downsampling strategies for fast image processing. The Se-
mantics Extractor module, based on ViT, takes the Token Pyramid 
as input to generate scale-aware semantics. The transformer-based 
structure enables explicit modeling of global interactions among pixels, 
obtaining richer semantics and a larger receptive field. Directly ap-
plying global self-attention to high-resolution tokens incurs extremely 
high computational costs due to the quadratic complexity associated 
with the number of tokens. By applying an average pooling layer 
to the tokens produced by the Token Pyramid, the number can be 
significantly reduced, such as to 1∕(64 × 64) of the input size, thus 
effectively alleviating the high computational complexity while fully 
utilizing the global information integration capability of ViT. The scale-
aware semantics generated by the Semantics Extractor are injected into 
the corresponding scale tokens through the Semantics Injection Module 
to enhance representation capability. Finally, the Segmentation Head 
executes the segmentation task using the enhanced token pyramid.

To establish a dataset for engineering machinery scenarios, the pre-
trained open-vocabulary model Grounded-SAM (Ren et al., 2024) is 
utilized to generate 2D semantic segmentation labels. This model en-
ables the acquisition of 2D labels that closely match the semantics of the 
given class names, facilitating the rapid construction of a real dataset. 
Specifically, Grounding DINO (Liu et al., 2025) is provided with the 
class names that may appear in the production scene (such as piles, 
ground, pedestrians, loaders, etc.) to generate detection bounding boxes 
along with corresponding logits and phrases. This information is then 
passed to SAM to generate precise segmentation binary masks, with 
the masks and logits jointly determining the label for each pixel. This 
process achieves automated dataset construction and annotation, ulti-
mately training a semantic segmentation model that is both lightweight 
and high-accuracy, well-suited for engineering machinery scenarios.

4.3. Semantics–elevation fusion

As shown in Fig.  7, segmenting the pile surface using only height in-
formation can lead to significant errors, due to inaccuracies in manually 
set ground height thresholds and height perception. Fig.  7(a) shows an 
irregular thin material pile during shoveling, and Fig.  7(c) demonstrates 
the result of height-based segmentation. Because of uneven ground 
perception and difficulty in determining accurate height ranges, the 
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elevation map fails to include the thin pile in front of the loader. In 
comparison, the semantic segmentation model accurately identifies this 
area (Fig.  7(b)), enabling complete surface reconstruction including the 
thin pile (Fig.  7(d)). Thus, integrating semantic information is essential 
for accurate pile surface segmentation.

The semantic segmentation model infers per-point semantic labels 
in pixel space, which are projected into 3D space via Eq.  (5) to obtain 
the semantic category confidence for each cell (𝑝1, 𝑝2, 𝑝3), where 𝑝1, 𝑝2
and 𝑝3 represent the probability that the cell is part of the ground, 
material, and other objects, respectively. We now provide a detailed 
explanation of how to achieve accurate pile surface segmentation by 
fusing semantic segmentation confidence with elevation map data.

First, the method for calculating the probability of a location being a 
material pile or the ground based solely on the elevation and variance 
layers of the elevation map is considered. The height information of 
points in the elevation map is modeled as 𝑧 ∼  (ℎ, 𝜎2𝑚). All points in the 
scene where 𝑧 ≤ 𝑧0 are extracted as ground for plane fitting, where 𝑧0 is 
an empirically determined fixed value. The RANSAC method (Fischler 
and Bolles, 1981) is employed to filter out outliers and determine the 
plane equation of the ground 𝑧′ = 𝑧′(𝑥, 𝑦) and the fitting variance 𝜎2𝑧 . 
Consequently, for each grid in the elevation map, the height category 
confidence that it is part of the ground is considered 𝑝1, while the height 
category confidence that it is the pile is 𝑝2 = 1 − 𝑝1, where: 

𝑝1 = 𝑃 (𝑧 < 𝑧′ + 𝜎𝑧) = ∫

𝑧′+𝜎𝑧

−∞

1
√

2𝜋𝜎𝑚
𝑒
− (𝑥−ℎ)2

2𝜎2𝑚 d𝑥 (10)

Then, the semantic information and height information are inte-
grated to assign a category for each cell in the semantic elevation map. 
If the semantic category is naively adopted as the definitive category, 
poor environmental lighting may affect the accuracy of the semantic 
segmentation results, leading to errors in the modeling of the semantic 
elevation map (as shown in Fig.  8(1)). Here, inspired by soft voting 
in ensemble learning, the semantic category confidence and the height 
category confidence are summed, and the category with the highest 
total confidence is selected. This approach helps to reduce the impact of 
environmental lighting on the model, enabling accurate modeling of the 
material surface (as illustrated in Fig.  8(2)). For safety considerations, if 
the semantic segmentation identifies the highest probability of a certain 
area being an obstacle category, then that area is directly considered 
as an obstacle. The final classification result can be expressed as: 

𝐶[𝑥𝑖, 𝑦𝑖] =

⎧

⎪

⎨

⎪

⎩

Obstacle, if 𝑝̂3 > max(𝑝̂1, 𝑝̂2),
Pile, else if 𝑝1 + 𝑝̂1 < 𝑝2 + 𝑝̂2,
Ground, otherwise.

(11)

By integrating the class information for each cell with its cor-
responding height data, an accurate semantic elevation map is con-
structed. From this map, all cells classified as ‘pile’ are extracted to 
generate a dedicated pile elevation map.

5. Shoveling point selection

The position of the shoveling point refers to the two-dimensional 
coordinates (𝑥𝑖, 𝑦𝑖) and the entry angle 𝛿𝑚 at which the bucket first con-
tacts the pile surface during the shoveling process. To ensure the safety 
and efficiency of the shoveling process, the feasibility of each boundary 
point is evaluated based on the pile elevation map 𝑀 , considering the 
risks of the loader overturning, colliding, or getting damaged, as well as 
operational efficiency to select the optimal shoveling point. As shown 
in Algorithm 2, given the loader’s initial position 𝑝0 and the shoveling 
point (𝑥𝑖, 𝑦𝑖, 𝛿𝑚), the loader needs to plan a path 𝛤𝑖,𝑚 between these two 
points, travel along this path to reach the point (𝑥𝑖, 𝑦𝑖) with an entry 
angle of 𝛿𝑚. This process is simulated, and scores for each indicator 
are calculated, which are then weighted to obtain the overall score for 
this point. Finally, the shoveling point and orientation with the highest 
score are selected.
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Fig. 7. (a) shows the real production scene of the thin material pile in front of the loader. (b) displays the result of semantic segmentation in pixel space of the 
loader’s front view. (c) represents the result of pile surface segmentation based solely on height thresholds. (d) is the result of pile surface segmentation after 

fusing height confidence and semantic confidence, indicating that incorporating semantic information is essential for material surface segmentation.
Fig. 8. Comparison of two fusion methods in dim lighting conditions. Method 
(1) directly uses semantic categories for classification, resulting in noticeable 
defects in the segmented pile area highlighted in the red box. Method (2) 
fuses semantic confidence with elevation confidence, significantly mitigating 
misclassification issues.

5.1. Torque balance score 𝑠𝑡

When the material pile is unevenly shaped, unequal torques act 
on the bucket ends. An excessive torque difference can damage the 
steering mechanism or even cause the loader to overturn. Hence, the 
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Algorithm 2 Shoveling Point Selection
Input:
Pile elevation map 𝑀
Loader initial state 𝑝0
Set of candidate shoveling points 𝑃 = {(𝑥𝑖, 𝑦𝑖)}
Set of candidate entry angles 𝛥 = {𝛿𝑚}
Safety thresholds: 𝑇res, 𝑑res, 𝜅max
Weight coefficients: 𝑘𝑡, 𝑘𝑠, 𝑘𝑐 , 𝑘𝑒, 𝑘𝑎
Output:
Optimal shoveling point (𝑥∗, 𝑦∗) with entry angle 𝛿∗
Initialize:
best_score ← −∞
best_point ← None
best_angle ← None
for each candidate shoveling point (𝑥𝑖, 𝑦𝑖) ∈ 𝑃  do
 for each candidate entry angle 𝛿𝑚 ∈ 𝛥 do
 𝛤𝑖,𝑚 ← PlanPath(𝑝0, (𝑥𝑖, 𝑦𝑖), 𝛿𝑚)
 𝑠𝑡 ← CalculateTorqueScore(𝑀,𝑥𝑖, 𝑦𝑖, 𝛿𝑚, 𝑇res)
 𝑠𝑠 ← CalculateSafetyScore(𝛤𝑖,𝑚,𝑀, 𝑑res)
 𝑠𝑐 ← CalculateConcavityScore(𝑀,𝑥𝑖, 𝑦𝑖, 𝛿𝑚)
 𝑠𝑒 ← CalculateEfficiencyScore(𝛤𝑖,𝑚, 𝛤 )
 𝑠𝑎 ← CalculateAngleScore(𝛤𝑖,𝑚, 𝜅max)
 𝐹 ← 𝑘𝑡 ⋅ 𝑠𝑡 + 𝑘𝑠 ⋅ 𝑠𝑠 + 𝑘𝑐 ⋅ 𝑠𝑐 + 𝑘𝑒 ⋅ 𝑠𝑒 + 𝑘𝑎 ⋅ 𝑠𝑎
 if 𝐹 > best_score then
 best_score ← 𝐹
 best_point ← (𝑥𝑖, 𝑦𝑖)
 best_angle ← 𝛿𝑚
 end if
 end for
end for
return best_point, best_angle

overturning torque is estimated using a simplified model: 
𝑇𝑐 =

∑

ℎ𝑖𝑗 ⋅ 𝜆𝑖, (12)

𝑖,𝑗∈𝛺
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where ℎ𝑖,𝑗 represents the height of that point in the semantic elevation 
map, 𝜆𝑖 denotes the lateral distance from that point to the center of 
mass of the bucket (with left being positive), and 𝛺 indicates the set 
of points on the pile covered by the bucket. Accordingly, the torque 
balance score is calculated as: 

𝑠𝑡 =

⎧

⎪

⎨

⎪

⎩

1 −
(

𝑇𝑐
𝑇𝑟𝑒𝑠

)2
, if 𝑇𝑐 < 𝑇𝑟𝑒𝑠,

−∞, otherwise,
(13)

where 𝑇𝑟𝑒𝑠 represents the set safety threshold. If the torque exceeds this 
threshold, there will be a significant risk of overturning, making that 
loading point not recommended. As the torque approaches the thresh-
old within a certain proximity, the score drops sharply; conversely, 
when the torques on both sides are comparatively balanced, the score 
approaches one.

5.2. Safety distance score 𝑠𝑠

The probability of collision during the shoveling process is generally 
related to the distance from obstacles. During attacking phase, a certain 
safety distance from obstacles 𝑑𝑟𝑒𝑠 should be maintained. Let the area 
covered by the loader during the process be 𝛬, and the area identified 
by semantic information as containing obstacles be 𝑃 . The minimum 
distance 𝑑𝑚𝑖𝑛 between the two areas is evaluated. The safety distance 
score is calculated as: 

𝑠𝑠 =

⎧

⎪

⎨

⎪

⎩

1, if 𝑑𝑚𝑖𝑛 > 𝑑𝑟𝑒𝑠,
𝑑𝑚𝑖𝑛
𝑑𝑟𝑒𝑠

, else if 𝑑𝑚𝑖𝑛 > 0,

−∞, otherwise.
(14)

5.3. Concavity score 𝑠𝑐

The concavity of the pile has a significant impact on the forces 
experienced by the loader. Related studies suggest that to improve 
operational efficiency, the loader should vertically penetrate the pile 
and shovel at raised positions, as concave piles introduce greater bucket 
resistance and adversely affect bucket fill rates. To estimate the concav-
ity at the point, this method employs a three-section bucket model. The 
future shoveling area is uniformly divided into three sections according 
to the bucket width, with volumes denoted as 𝑉𝑙, 𝑉𝑚, and 𝑉𝑟 for the left, 
middle, and right sections, respectively. A shoveling point is classified 
as convex if the volume in the middle section surpasses the maximum 
volume of the two side sections; otherwise, it is deemed concave. The 
concavity score is calculated using the formula: 

𝑠𝑐 =

{

1, if 𝑉𝑚 ≥ max{𝑉𝑙 , 𝑉𝑟},
0, otherwise.

(15)

5.4. Efficiency score 𝑠𝑒

In ensuring safety, loaders generally tend to choose points that are 
closer in order to enhance operational efficiency. The trajectory length 
corresponding to the current point is denoted as 𝑙𝑖,𝑚. For all trajectories 
Γ corresponding to all candidate shoveling points on the same pile, the 
length of the longest trajectory is denoted as 𝑙𝑚𝑎𝑥, and the length of the 
shortest trajectory is denoted as 𝑙𝑚𝑖𝑛. The efficiency score is calculated 
using the formula: 

𝑠𝑒 =
𝑙𝑚𝑎𝑥 − 𝑙𝑖,𝑚
𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛

. (16)

5.5. Entry angle score 𝑠𝑎

When shoveling materials, the angle between the front and rear 
axles of the loader should not be excessively large;  otherwise, the 
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lateral pressure on the hinge during entry into the pile increases, raising 
the risk of structural damage or even tipping over. The angle between 
the front and rear axles is related to the curvature at the end of the 
trajectory, denoted as 𝜅𝑖,𝑚. Therefore, during production operations, 
the loader should avoid exceeding the permissible curvature 𝜅𝑚𝑎𝑥 while 
minimizing the trajectory end curvature to ensure safety. The entry 
angle curvature score is calculated using the formula: 

𝑠𝑎 = 1 −
|𝜅𝑖,𝑚|
𝜅𝑚𝑎𝑥

. (17)

Finally, the comprehensive score for the shoveling point is obtained 
by weighting all indicators: 
𝐹 = 𝑘𝑡 ⋅ 𝑠𝑡 + 𝑘𝑠 ⋅ 𝑠𝑠 + 𝑘𝑐 ⋅ 𝑠𝑐 + 𝑘𝑒 ⋅ 𝑠𝑒 + 𝑘𝑎 ⋅ 𝑠𝑎, (18)

where 𝑘𝑡, 𝑘𝑠, 𝑘𝑐 , 𝑘𝑒, 𝑘𝑎 corresponds to the weight of the respective score 
indicator. This calculation method effectively helps to avoid exces-
sive overturning moments, collisions, and other situations that could 
damage the vehicle and threaten environmental safety. To determine 
these parameters, we collected elevation maps of material surfaces 
along with the positions and orientations of both the vehicle’s starting 
point outside the bin and the final selected scooping points during 
routine operations by expert operators. This process resulted in a 
human-optimized dataset comprising 482 distinct scenarios. We then 
employed the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm to optimize the weighting parameters, with the objective 
of minimizing the discrepancy between the algorithm-selected scooping 
points and those chosen by the human operators across all scenarios.

6. Shoveling control strategy

The process of shoveling can essentially be divided into three 
phases: the attacking phase before contacting the pile, the crowding 
phase while contacting and continuing to advance, and the scooping 
phase during which the shoveling action is executed. The goal of 
shoveling control is to select an appropriate triggering method that 
enables the automatic loader to transition from the crowding phase to 
the scooping phase, and to execute the appropriate shoveling strategy 
during the scooping phase. In this work, the timely triggering of the 
scooping action is achieved by estimating accurate shoveling volume 
through perception and predictive algorithms, and an adaptive scoop-
ing strategy selection algorithm is proposed based on the two improved 
scooping strategies.

6.1. Shoveling volume estimation

The volume of material being shoveled refers to the combined 
volume of material handled during the crowding and scooping phases 
of a single loading task, which includes the current shoveled volume 
𝑉1 and the future shoveling volume 𝑉2 (as shown in Fig.  9).

Due to the inherent delays in signal reception and response of the 
automation program, as well as the response of the hydraulic actuators 
to PWM commands, the loader scoops a portion of material, denoted as 
𝑉21, from the moment the scooping command is issued until the actual 
initiation of the scooping action, as indicated by the ‘Delay’ label in Fig. 
9. Subsequently, as the loader’s arm moves to execute the scooping 
action, it scoops an additional portion of material, denoted as 𝑉22, as 
shown in the ‘Control’ segment of Fig.  9. Consequently, the total volume 
of material that will be scooped in the future is the sum of these two 
volumes, expressed as 𝑉2 = 𝑉21 + 𝑉22.

The current real-time volume of material being shoveled can be 
calculated based on the pile elevation map: 
𝑉1 =

∑

𝑖∈𝛺
(ℎ𝑖 − ℎ′𝑖) ⋅ 𝜀2, (19)

where ℎ𝑖 represents the estimated height corresponding to the 𝑖th cell 
in the semantic elevation map, 𝛺 denotes the region of the elevation 
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Fig. 9. The shoveling process of a loader consists of three stages: Attacking, 
Crowding, and Scooping. The total volume of material shoveled includes the 
current shoveled volume 𝑉1 and the future shoveling volume 𝑉2, which is 
further divided into the delayed portion 𝑉21 and the scooped volume 𝑉22.

map traversed by the bucket teeth during the shoveling process, ℎ′𝑖 is 
the height of the bucket teeth when it passes over the 𝑖th cell, and 𝜀
is the resolution of the semantic elevation map. The calculation of the 
volume covered by the bucket begins upon contact with the material 
pile, and this value incrementally increases as the shoveling operation 
progresses.

The future shoveling volume is equivalent to the amount of material 
that can still be shoveled by the bucket if it enters the scooping phase 
at this moment, and can be predicted by estimating the trajectory of 
the bucket, which essentially involves penetration depth prediction. 
The speed of the loader during the scooping phase is a time-varying 
function. Due to the unpredictable resistance encountered during this 
process, influenced by multiple factors such as material type and pile 
shape, it is challenging to model the true physical dynamics of the 
loader’s movement during shoveling. Therefore, a data-driven approach 
is adopted, using Support Vector Regression (SVR) to forecast the pene-
tration depth. This model estimates the nonlinear relationship between 
several input variables that may affect the future shoveled volume 
and the penetration depth. The influencing factors mainly include the 
current speed 𝑣, the instantaneous shoveled volume 𝑉1, the material 
type 𝑀 , and pile geometry (in this case, six points are taken along the 
depth direction with a horizontal spacing of 𝛥𝑙 = 0.5 m on the pile 
surface in the loader’s field of view, denoted as 𝐡 = (ℎ1, ℎ2,… , ℎ6)). 
The six-point elevation sampling strategically balances computational 
efficiency with spatial resolution, capturing critical inflection points 
in pile topography that dictate force distribution during penetration. 
Such physically-grounded feature engineering ensures the SVR model 
effectively predicts the penetration depth in real-time during each 
shoveling process. The loader’s position during shoveling can then be 
calculated based on the penetration depth, and combined with Eq.  (2) 
to calculate the motion trajectory of the bucket teeth. Finally, using 
Eq.  (19), the future shoveling volume can be calculated. By adding the 
current shoveled volume to the future shoveling volume, the volume of 
material that the loader’s bucket can obtain in a single operation can 
be determined. Controlling the loader based on the total volume allows 
for real-time and precise triggering of scooping actions.

6.2. Scooping operations

The ‘‘Just in & out’’ strategy involves rotating and retracting the 
bucket to a certain height, followed by lifting the boom to a specific 
angle to complete the scooping. In contrast, the ‘‘Stairway’’ strategy 
entails slightly lifting the boom, then retracting the bucket by a small 
angle, pausing for a period, and repeating this process multiple times. 
The performance of the loader using these two strategies during the 
scooping phase is shown in Figs. 10(a) and 10(b). Retracting the bucket 
to a designated angle and lifting the boom to a designated angle can be 
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considered as two distinct atomic actions. The ‘‘Just in & out’’ strategy 
requires the execution of one set each of retracting the bucket and 
lifting the boom atomic actions, which is suitable for materials with 
low resistance, thus offering high efficiency and low energy consump-
tion. Conversely, the ‘‘Stairway’’ strategy divides the bucket retraction 
action into multiple sets of atomic actions executed intermittently to 
cut through the material, which is suitable for materials with high 
resistance. As the number of atomic actions increases, the shoveling 
efficiency decreases, and energy consumption rises.

Improvements have been made to both strategies. For the ‘‘Just in & 
out’’ strategy, an open-loop predictive approach is employed, executing 
the scooping action directly when the predicted shoveling volume 
reaches the target value. This method allows for more precise control 
of the shoveling volume and faster shoveling compared to traditional 
perception-triggered methods without shoveling volume prediction (as 
shown in Figs.  10(c) and 10(d)). For the ‘‘Stairway’’ strategy, a feedback 
loop between atomic actions is incorporated to assess the real-time 
scooping volume, allowing the scooping to be completed once the 
volume reaches the target value, rather than setting a fixed number 
of bucket retraction atomic actions. This approach ensures the prompt 
and accurate triggering of the ‘‘Just in & out’’ strategy and minimizes 
the operational time and energy consumption of the ‘‘Stairway’’ strat-
egy. Additionally, it leverages open-loop prediction and closed-loop 
feedback to precisely control the shoveling volume.

Algorithm 3 Shoveling Strategy Selection
1: Attacking recommended shoveling point
2: Calculate the current shoveling volume 𝑉1
3: while 𝑉1 > 0, Crowding do
4:  Calculate the current shoveling volume 𝑉1
5:  Retrieve the material type 𝛾
6:  Estimate 𝑉2 based on penetration depth prediction
7:  if 𝑉1 + 𝑉2 ⩾ 𝑉𝑡 then
8:  if 𝛾 ∈ 𝛶  then
9:  Scooping using the "Stairway" strategy
10:  else
11:  Scooping using the "Just in & out" strategy
12:  end if
13:  else if 𝑉1 > 0 and 𝑣 ≈ 0  then
14:  Scooping using the "Stairway" strategy
15:  end if
16: end while

Additionally, an adaptive shoveling algorithm capable of flexibly 
employing the two strategies is proposed, as illustrated in Algorithm 
3. Initially, during the attacking phase, the loader controls the bucket 
to stay close to the ground and navigates along the planned trajectory, 
advancing towards the chosen loading point. As the bucket impacts 
and penetrates the material pile, the crowding phase commences, with 
real-time computation of 𝑉1 and 𝑉2. If 𝑉1 + 𝑉2 reaches the target 
loading volume 𝑉𝑡, the scooping phase is initiated. In this phase, a 
preliminary scooping strategy is determined based on the material 
type 𝛾: for difficult-to-load materials such as river sand (𝛾 ∈ 𝛶 ), 
the ‘‘Stairway’’ strategy is selected; for easy-to-load materials such as 
crushed gravel, the ‘‘Just in & out’’ strategy is chosen. If 𝑉1 + 𝑉2 is less 
than the target loading volume but the loader cannot proceed further 
(𝑉1 > 0 and 𝑣 ≈ 0), it directly enters the scooping phase and adopts 
the ‘‘Stairway’’ strategy, utilizing closed-loop feedback for stable and 
precise control. It should be noted that the vehicle stopping determi-
nation (𝑣 ≈ 0) employs a lightweight yet robust mechanism based 
on confidence thresholds and hysteresis logic. In each control cycle, 
if the vehicle speed is below 0.15 m/s, the confidence level increases 
by (0.1 − 𝑣) × 100. When the speed exceeds 0.15 m/s, the confidence 
level is reset to zero. A stopping state is confirmed once the confidence 
level reaches 100. After completing the scooping action, the bucket’s 



G. Chen et al. Engineering Applications of Artiϧcial Intelligence 167 (2026) 113908 
 
(a) 

  
(b) 

 

 
(c) 

  
(d) 

 

Fig. 10. Comparison of different shoveling strategies. (a) pressure-triggered ‘‘Just in & out’’ strategy, (b) pressure-triggered ‘‘Stairway’’ strategy, (c) perception-
triggered ‘‘Just in & out’’ strategy without shoveling volume prediction, (d) perception-triggered ‘‘Just in & out’’ strategy with shoveling volume prediction.
upper edge is leveled, and the material is vibrated to prevent overflow 
during transportation, before the loader begins to retreat and convey 
the material. Based on this strategy selection algorithm, the system 
can autonomously choose the optimal scooping strategy according to 
the material type and vehicle operation conditions, achieving timely 
triggering of the scooping phase through open-loop prediction and 
timely completion of scooping actions through closed-loop feedback, 
thereby balancing robustness, efficiency, and energy consumption.

The underlying control architecture implements a multi-layered ap-
proach for precise material handling operations. For manipulator joint 
regulation, a PID-based position controller with solenoid valve dead-
zone compensation governs the boom and bucket articulation, utilizing 
pre-calibrated target angles optimized for distinct shoveling phases. 
The propulsion system employs an acceleration-oriented PID velocity 
controller, derived from comprehensive throttle-brake acceleration pro-
filing, which maintains constant speed regulation during attacking and 
crowding phases before transitioning to fixed acceleration control upon 
scooping initiation. Wheel slip mitigation is achieved through predic-
tive material volume estimation rather than direct slip detection, with 
real-time motion state prediction algorithms preemptively compensat-
ing for potential traction loss through timely bucket actuation that 
reduces material accumulation resistance ahead of the implement. This 
integrated approach ensures coordinated electromechanical response 
while eliminating reliance on explicit slip monitoring subsystems.

7. Experiments and results

To validate the performance and applicability of the proposed sys-
tem, field production experiments were conducted over two months us-
ing two different models of loaders (SDLG L955HE and XCMG 968EV) 
at three real mixing station scenarios in Shanghai, Hangzhou, and 
Lanzhou, China (referred to as Mixing Station A, B, and C, respectively). 
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Table 1
Parameter list.
 Parameter name Symbol Value 
 Reflectivity weight 𝜔𝑅 0.20  
 Normal vectors weight 𝜔𝑁 0.30  
 Segmentation weight 𝜔𝑆 0.50  
 Noise parameter 𝛼𝑑 0.05  
 Resolution of elevation map 𝜀 0.30  
 Torque balance weight 𝑘𝑡 0.29  
 Safety distance weight 𝑘𝑠 0.23  
 Concavity weight 𝑘𝑐 0.13  
 Efficiency weight 𝑘𝑒 0.25  
 Entry angle weight 𝑘𝑎 0.10  

Fig. 11.  The surface plot of the calibration cost function as it varies with the 
errors in the calibration parameters.

The experimental equipment primarily included a computing platform 
(NVIDIA Jetson Orin with a 12-core ARM Cortex-A78 CPU, 64 GB RAM, 
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Fig. 12. Camera–laser projection results before and after the automatic calibration.
Fig. 13. Fusion results of the semantic elevation maps before and after the automatic calibration.
and NVIDIA Ampere 2048-CUDA GPU), a SENSING monocular camera 
(model SG3S-ISX031C-GMSL2F, resolution 1920H × 1536V, frame rate 
30 fps), a VanJee WLR-720 16-line laser, and a DJI Livox Avia front 
perception laser. The entire autonomous shoveling system is deployed 
on an edge computing device (Jetson Orin). The underlying trajectory 
control, travel velocity control, and joint position control operate at a 
frequency of 100 Hz. The semantic segmentation model and elevation 
map update are deployed on the GPU, with the semantic elevation map 
and shoveling point selection updated at a frequency of 7 Hz. Shoveling 
action execution and strategy selection are implemented via a state 
machine with an output frequency of 20 Hz. The parameters used and 
their corresponding values are shown in Table  1.

7.1. Calibration results

The kinematic calibration data collection for XCMG 968EV loader’s 
arm utilized a low-cost laser rangefinder. Seven sets of end-effector dis-
placement data with corresponding IMU sensor readings were recorded 
across different arm postures. Fig.  11 demonstrates the variation of 
calibration cost function surfaces with parameter errors (𝑙1, 𝑙2, 𝛼1, 𝛼2), 
revealing a distinct global minimum that facilitates straightforward 
optimization. Calibration results showed a boom length of 3.13 m, 
deviating merely 0.02 m from the official 3.11 m specification. Sim-
ilarly, the bucket length measurement yielded 1.263 m, differing by 
0.032 m from the documented 1.295 m. Both discrepancies remained 
within 1% tolerance thresholds. These experimental outcomes validate 
the practical precision of the implemented arm kinematic calibration 
methodology.

An extrinsic calibration experiment was subsequently performed on 
the forward perception module containing a monocular camera and 
solid-state laser sensor. As depicted in the left panel of Fig.  12, after a 
period of operation, there was a deviation in the projection relationship 
between the camera and the laser. Application of the SAM-based au-
tomatic calibration methodology yielded precise extrinsic parameters, 
evidenced by the corrected projection state marked with a red border in 
the corresponding right panel. Comparative analysis of semantic eleva-
tion map fusion outcomes, shown in Fig.  13, demonstrates performance 
improvements through automatic calibration. The left panel exhibits 
erroneous fusion patterns involving construction elements like mate-
rial piles and walls, while the right panel displays accurately aligned 
12 
Fig. 14. Loss function variation during the semantic segmentation model 
training.

semantic fusion after calibration. These visual comparisons confirm 
that the automatic calibration algorithm effectively enhances semantic 
fusion precision through improved calibration accuracy. Notably, the 
implemented solution eliminates dependency on specialized calibra-
tion artifacts or manual adjustments during operation, rendering it 
particularly advantageous for vibration-prone construction equipment 
requiring frequent recalibration.

7.2. Material surface perception results

In this section, the results of semantic segmentation and semantic-
height fusion are introduced, showcasing the effectiveness of the pro-
posed techniques in accurately perceiving and interpreting the material 
surface within the context of automated loading operations.

7.2.1. Semantic segmentation
A dataset of 3800 images capturing diverse environmental condi-

tions and observational perspectives from typical scenarios at mixing 
stations was collected. Automatic segmentation of ground surfaces, 
material piles, loaders, and other obstructions was performed using 
the Segment Anything Model (SAM). Following manual verification of 
the automated segmentation outputs and categorical annotation, the 
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(a) Pile.

  
(b) Ground.

  
(c) Loader.

  
(d) Other.

 

Fig. 15. Variation of the IoU metrics for different categories during the training of the semantic segmentation model.
Fig. 16. Results of the semantic segmentation field tests, where different categories are marked in different colors (Red: unmanned loader, Yellow: other loaders, 
Blue: passable area, Green: material pile, Black: other areas).
dataset was randomly partitioned into 3500 training samples and 300 
validation samples. Notably, the SAM framework significantly reduced 
manual annotation efforts while maintaining cross-frame segmentation 
consistency. To enhance model robustness and generalization, training 
images underwent spatial transformations including random scaling, 
non-uniform cropping, aspect ratio distortion, and horizontal flipping, 
with final resampling to 480 × 383 px resolution.

The training protocol was implemented on an NVIDIA A30 GPU-
accelerated workstation using the Adam optimizer (learning rate =
0.0003, batch size = 16). The model hyperparameters for Semantic 
Segmentation TopFormer and SAM are shown in Tables  2 and 3, re-
spectively. As depicted in Figs.  14 and 15, model convergence occurred 
after 200k iterations (3-hour duration), achieving a final training loss 
of 0.014 and mean intersection-over-union (mIoU) of 97.32%, with 
per-class IoU metrics surpassing 90%. Experimental validation across 
varying illumination conditions (optimal, high-intensity, and low-light 
environments) demonstrated the model’s environmental robustness, as 
illustrated in Fig.  16 showing input–output pairs from test scenarios.

The implemented architecture exhibits real-time performance with 
6 ms inference latency on Jetson Orin edge devices, characterized by 
1.4M parameters and 0.5G FLOPs computational complexity. Quanti-
tative evaluations confirm the model’s capacity to maintain segmenta-
tion precision under photometric interference, accurately delineating 
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Table 2
Semantic segmentation TopFormer model hyperparameters.
 backbone decode_head

 num_heads 4 num_classes 7  
 in_channels [16, 32, 64, 96] in_channels [128, 128, 128]  
 out_channels [None, 128, 128, 128] out_channels 128  
 depths 4 dropout_ratio 0.1  
 c2t_stride 2 loss_type CrossEntropyLoss 

ground features, material piles, pedestrians, loaders, and environmen-
tal obstacles. Comparative analysis reveals computational efficiency 
advantages over conventional segmentation networks while maintain-
ing competitive accuracy metrics, rendering it particularly suitable 
for construction machinery applications requiring resource-constrained 
deployment.

7.2.2. Perception fusion
To verify the accuracy of the perception fusion, a moment’s ma-

terial surface segmentation result was randomly selected from Mixing 
Station B. As shown in Fig.  17, the mixing station comprises eight 
material bins, each containing material piles of varying capacities and 
shapes. Other loaders are parked in bins 5 and 8, while bins 6 and 
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Table 3
Semantic segmentation SAM model hyperparameters.
 image_encoder prompt_encoder mask_decoder

 encoder_depth 32 image_embedding_size (64, 64) num_multimask_outputs 3  
 embed_dim 1280 embed_dim 256 iou_head_depth 3  
 num_heads 16 mask_in_chans 16 iou_head_hidden_dim 256 
Fig. 17. Perception results of the material surface at the Mixing Station B. Our proposed perception fusion algorithm effectively filtered out interference from 
various objects, such as parked loaders (e.g., bins 5 and 8) and fences(bins 6 and 7), while also achieving precise perception of material surfaces with different 
shapes(bins 1–4).
Fig. 18. The perception consistency results of the pile segmentation. Arrows indicate the position and direction of the unmanned loader.
7 are randomly cluttered with obstacles, including fences and other 
debris. The algorithm was able to detect these anomalies and accurately 
segment the material surface lines, demonstrating the accuracy and 
reliability of the method for material surface segmentation based on 
the fusion of semantic and elevation information. The consistency of 
the material surface segmentation results under different perception 
perspectives and distances was also validated. Processes of unmanned 
loaders performing loading operations in different bins within the mix-
ing station were randomly selected to simulate variations in perception 
distance and perspective of the sensor towards the material piles. The 
segmentation results of the material surface lines were recorded as the 
loader was in different positions. As shown in Fig.  18, the greater the 
coincidence of the material surface lines in each bin, the more similar 
the positions of the material surface lines perceived by the loader from 
different locations, indicating more stable perception results. It can 
be observed that the contours and positions of the material surface 
lines perceived by the loader at different locations and moments during 
the operation in the mixing station are similar. This similarity in the 
material surface perception results indirectly illustrates the perception 
accuracy of the proposed algorithm.
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7.3. Shoveling points selection

We selected several typical regular and irregular pile surface profiles 
from three mixing stations and conducted comparative tests with a 
state-of-the-art shovel point selection algorithm (Chen et al., 2024). As 
illustrated in Fig.  19, the top 20 scoring shovel points and the optimal 
shovel point for each surface type are identified and marked with white 
and red arrows, respectively. For the relatively flat pile in Fig.  19(a), 
the shovel points are evenly distributed along the surface, and the 
optimal points recommended by both methods are generally similar. 
However, for the second irregular surface in Fig.  19(a), Chen’s method 
selects an optimal point closer to the lower region. Comparing the 
remaining surfaces in Fig.  19(a) and (b), we observe that the primary 
distinction between the two methods is that our approach tends to 
recommend safer shovel points. For instance, in Fig.  19(c), our optimal 
point is farther away from the parked loader and the wall.

To quantitatively evaluate the performance, we performed actual 
shoveling operations on three surfaces with significant selection dif-
ferences: the second surface (Scenario a) in Fig.  19(a), the second 
(Scenario b) in Fig.  19(b), and the third (Scenario c) in Fig.  19(c). 
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Fig. 19. Performance comparison of shoveling point selection methods across various pile surfaces. Each material surface features 20 candidate shoveling points 
marked with white arrows, and the most suitable shoveling point is indicated with a red arrow. The three material surface scenarios (Scenario a, b, c) used for 
the bucket fill rate comparison are labeled.
Table 4
Comparison of bucket fill rates for different shoveling point selection methods.
 Method Scenario a Scenario b Scenario c 
 Chen’s approach (Chen et al., 2024) 80.37% 97.46% 0%  
 Our approach 93.88% 96.93% 95.98%  
Using a perception-triggered ‘‘Stairway’’ shoveling strategy uniformly, 
we conducted five repeated trials for each scenario. As summarized in 
Table  4, our method achieved a higher bucket fill rate in Scenario a. In 
Scenario b, both methods yielded comparable bucket fill rates, but the 
shoveling point of Chen’s method required a longer navigation time due 
to its more distant location. In Scenario c, the shovel point selected by 
Chen’s method posed a collision risk behind the parked loader, making 
it unsuitable for practical shoveling. The results demonstrate that the 
scoring metrics and weights incorporated in our method successfully 
account for a wide range of scenarios encountered in actual production. 
This enables the loader to select reasonable shoveling points when 
faced with different material surface shapes, ensuring the loader’s own 
safety while also reducing safety threats to the environment.

7.4. Shoveling control strategy

In this section, the results of shoveling volume prediction and 
shoveling strategy selection are introduced, followed by a quantitative 
comparative analysis of different shoveling control strategies.

7.4.1. Shoveling volume estimation
To establish a model between travel distance and various factor 

variables, 991 instances of real shoveling data were collected over a 
60-day period at Mixing Station C. The training and validation set 
ratio was set to 8:2. The performance of the model trained on the 
training set is shown in Fig.  20. The left subplot displays the ground 
truth and predicted values for all test samples, where the solid blue 
curve represents the actual travel distance and the blue points represent 
the predictions made by the model. The right subplot shows the error 
distribution across different material types. The model’s absolute error 
predictions on the test set are within 0.1m for 75.2% of the points, 
within 0.15m for 94.3% of the points, and within 0.2m for 99% of the 
points, with a mean squared error of 0.0843. The experimental results 
indicate that our model can fit the travel distance well within a certain 
error range.

To test the accuracy of the shoveling volume predictions, field 
tests were conducted by comparing the predicted bucket path with 
the actual path of the loader. The distance the loader will continue to 
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travel and the expected bucket teeth trajectory at a certain moment 
were predicted, and the loader was enabled to enter the scooping 
phase. Fig.  21 illustrates four intermediate states during the loader’s 
scooping process along with the actual arm postures, with the red line 
representing the predicted trajectory of the bucket teeth. Stage (a)–(b) 
indicates the vehicle’s travel due to hydraulic delay, stage (b)–(c) 
represents the process of the loader retracting the bucket, and stage 
(c)–(d) shows the loader raising the boom and exiting. The highlighted 
yellow square area in Figure (d) indicates the actual volume of material 
shoveled by the loader. It is evident that the algorithm can accurately 
predict the loader’s future shoveling process and calculate the volume 
based on the predictions. Meanwhile, we observed that the time delay 
between triggering the scooping action (current scoop volume: 1.505 
m3, predicted volume: 1.708 m3) and the actual movement of the 
arm (current scoop volume: 2.962 m3) is approximately 0.6 s, which 
is caused by computational latency and hydraulic control delays. The 
final scoop volume reached 3.349 m3. Therefore, the proportion of V21 
(1.457 m3) in V2 (1.844 m3) amounts to 79%, indicating a segment that 
deserves significant attention. The proposed distance-based prediction 
method achieves a final volume prediction accuracy of 92.6%.

7.4.2. Shoveling control comparison
As shown in Table  5, we conducted a quantitative comparative anal-

ysis of the phase-specific performance and final bucket fill rates under 
different scooping strategies. The distinctions among these strategies lie 
in both the scooping trigger condition (pressure-based vs. perception-
based) and the action policy executed during the scooping phase. Here, 
‘‘Stairway’’ refers to an approach where the number of ‘‘Stairway’’ 
motions is dynamically adjusted based on real-time perceived volume, 
while ‘‘auto-selection’’ denotes the use of rules from Algorithm 3 to 
choose between the ‘‘Just in & out’’ and ‘‘Stairway’’ strategies. The last 
row corresponds to operational data collected from an expert wheel 
loader operator. Each strategy was tested five times with gravel and 
five times with sand, and all metrics were averaged to mitigate the 
impact of single-trial variability. The bucket fill rate was quantified via 
a perception laser system installed above the mixing station yard, with 
implementation details referenced from Chen et al. (2025). According 
to the results, the pressure-triggered ‘‘Stairway #3’’ strategy achieved 



G. Chen et al. Engineering Applications of Artiϧcial Intelligence 167 (2026) 113908 
Fig. 20. The performance of the penetration depth prediction on the dataset. (left) The blue curve indicates the true values of the penetration depth, and the 
green scatter points represent the penetration distances predicted by the model. (right) Error distribution across different material types.
Table 5
The impact of different shoveling strategies on phase-specific metrics and the final bucket fill rate.
 Method Crowding Scooping Bucket fill rate 
 Trigger Scooping strategy Time (s) Energy (kJ) Time (s) Energy (kJ)  
 Pressure ‘‘Stairway #3’’ 3.75 57.9 6.34 247.8 98.3%  
 Perception ‘‘Stairway #3’’ 0.32 12.7 6.51 242.5 98.8%  
 Perception ‘‘Stairway’’ 0.41 11.9 5.78 224.9 97.9%  
 Perception ‘‘Just in out’’ 0.36 13.6 4.45 195.4 82.4%  
 Perception Auto-selection 0.39 12.8 4.85 213.7 97.8%  
 Manual Manual 1.02 30.6 4.89 217.8 98.1%  
Fig. 21. Comparison between the model-predicted bucket trajectory (red line) 
and the actual situation, and the yellow areas in the elevation diagram 
indicate the actual shoveled volume. (a)–(b) represents the process of vehicle 
movement due to hydraulic delay, (b)–(c) represents the process of the loader 
retracting the bucket, and (c)–(d) represents the process of the loader raising 
the boom and exiting.

a relatively high fill rate but consumed the most time and energy. 
In contrast, our proposed perception-triggered method significantly 
reduced the triggering time for the scooping phase (from 3.75 s to 
0.37 s) and lowered energy consumption (from 57.9 to 12.8 kJ). 
The choice of scooping strategy also had a considerable impact on 
the final bucket fill rate. Although ‘‘Just in & out’’ resulted in faster 
scooping times, it led to a lower bucket fill rate of only 82.4% in high-
resistance scenarios such as sand handling. Compared with ‘‘Stairway 
#3’’, the adaptive ‘‘Stairway’’ strategy, assisted by perceptual feedback, 
reduced unnecessary motions with only a marginal decrease in bucket 
fill rate, thereby shortening the total scooping duration and cutting 
energy use. Our proposed ‘‘auto-selection’’ method, which integrates 
three key mechanisms (perception-based triggering, dynamic policy se-
lection, and feedback-controlled adjustment of ‘‘Stairway’’ repetitions) 
achieved overall performance, demonstrating balanced improvements 
in bucket fill rate, time efficiency, and energy consumption. Moreover, 
it is evident that the automated scooping triggering phase outperforms 
manual operations.
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7.5. Large-scale, long-term production

As shown in Table  6, the proposed algorithm combines both strate-
gies and has been stably operational for 8 weeks at Mixing Station B 
and 5 weeks at Mixing Station A, executing 1603 and 487 loading tasks, 
respectively, all of which successfully completed the shoveling tasks. 
Taking Mixing Station B as an example, when scooping gravel, the ‘‘Just 
in & out’’ strategy was primarily chosen, accounting for 96.6% of all 
gravel data, indicating that this strategy performs well in most cases. 
When scooping river sand, the ‘‘Stairway’’ strategy was mainly selected, 
with about 79.1% of atomic actions being 1 (‘‘Stairway #1’’), having 
similar time consumption but higher energy consumption compared to 
the ‘‘Just in & out’’ strategy; about 20.9% of atomic actions were 3 
(‘‘Stairway #3’’), with both time and energy consumption exceeding 
the ‘‘Just in & out’’ strategy by more than 20% (The ‘‘Stairway #2’’ 
strategy was employed only on 22 tasks, which was not accounted 
for in the table). Additionally, 3.4% of gravel were scooped using the 
‘‘Stairway’’ strategy, indicating unexpected situations where the bucket 
was not full but the vehicle speed was zero, necessitating intervention 
through feedback. Multiple large-scale production experiments have 
shown that the proposed algorithm can fully consider the possible sce-
narios in actual production, flexibly select different strategies according 
to the situation, and truly balance efficiency, energy consumption, and 
robustness. If the fixed number of ‘‘Stairway #3’’ scooping strategies 
used in Refs. Cao et al. (2023a,b) is taken as the baseline, the proposed 
adaptive scooping strategy, after 2090 long-term tests, has reduced the 
time spent in the scooping phase by 22% and energy consumption 
by 13%, while maintaining a high bucket fill rate to meet the actual 
production requirements of the mixing station. As shown in Table  7, 
we re-evaluated the performance of the automated algorithm based on 
material type. For sand, the exclusive use of the ‘‘Stairway’’ strategy 
resulted in longer scooping time and higher energy consumption. In 
the case of gravel, the fallback ‘‘Stairway’’ strategy was occasionally 
triggered under special circumstances, such as insufficient forward 
speed towards the pile. However, such instances accounted for only 
3.9% of all gravel scooping actions, relative to the dominant ‘‘Just in 
& out’’ strategy.

A statistical analysis was conducted on the time consumption and 
energy consumption of different shoveling strategies in actual produc-
tion. Specifically, the time consumption refers to the duration from 
the moment the bucket contacts the material to the completion of the 
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Table 6
Operational data from stable operations over 8 weeks at Mixing Station B and 5 weeks at Mixing Station C, recording material types processed by different 
shoveling strategies, average shoveling time, and average energy consumption.
 Week Just in & out Stairway #1 Stairway #3
 Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ) 
 0920–0922 59 5.12 208.86 13 1 5.06 241.58 1 1 7.01 289.8  
 0923–0929 249 4.97 204.59 44 1 5.06 246.98 8 5 7.12 289.04  
 1007–1013 285 4.89 201.5 86 2 4.86 234.5 12 8 6.47 252.74  
 1014–1020 115 4.82 199.02 17 0 4.84 236.55 2 1 6.07 204.1  
 1021–1027 48 4.58 188.23 1 0 4.29 230.33 0 0 – –  
 1104–1110 96 5.12 205.74 69 0 5.01 226.07 40 7 6.44 241.07  
 1111–1117 109 5.16 207.4 77 4 5.11 242.87 20 5 6.49 222.67  
 1118–1122 92 4.91 191.18 98 2 4.81 215.66 24 1 6.25 238.85  
 Sum/Mean/Mean 1053 4.95 201.86 415 4.95 231.86 135 6.48 243.5  
 Week Just in & out Stairway #1 Stairway #3
 Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ) 
 1014–1020 64 4.71 202.90 30 1 5.09 266.49 0 0 – –  
 1021–1027 53 4.53 191.94 24 2 4.68 222.24 2 3 5.98 255.64  
 1104–1110 94 4.88 216.63 30 5 5.56 246.58 0 3 6.64 264.04  
 1111–1117 21 4.96 232.19 24 0 5.15 263.52 0 2 6.15 286.23  
 1118–1122 90 4.80 223.84 39 0 5.02 260.30 0 0 – –  
 Sum/Mean/Mean 322 4.77 212.87 155 5.12 252.55 10 6.21 264.28  
Table 7
Shoveling performance by material type. Note that values for ‘‘Just in & out’’ 
and ‘‘Stairway’’ columns represent occurrence counts.
 Material type Just in & out Stairway Time (s) Energy (kJ) 
 Big gravel 1221 23 4.96 205.74  
 Small gravel 154 31 5.04 210.86  
 Sand 0 661 5.38 241.65  

Fig. 22. Boxplot of time and energy consumption for different shoveling 
strategies; ‘‘Stairway#𝑖’’ indicates the ‘‘Stairway’’ strategy with atomic action 
count 𝑖.

scooping motion, while the energy consumption is the total energy used 
by the travel motor and hydraulic motor during the shoveling period. 
From the boxplot 22(a), it can be observed that the time consumption 
of the ‘‘Stairway’’ strategy increases with the number of atomic actions. 
When the number of atomic actions is 1, the time consumption is 
similar to the ‘‘Just in & out’’ strategy, with a median of approximately 
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5 s; for each additional atomic action, the median time consumption in-
creases by about 0.7 s, indicating that pauses between multiple atomic 
actions consume more time. From the boxplot 22(b), it is evident that 
the ‘‘Stairway’’ strategy consumes significantly more energy. When the 
number of atomic actions is 1, the median energy consumption is about 
25% higher than the ‘‘Just in & out’’ strategy due to the increased 
difficulty in scooping the material and higher resistance; as the number 
of atomic actions increases, multiple actions are required, leading to 
an increasing trend in energy consumption. The experimental results 
confirm that the ‘‘Just in & out’’ strategy is superior to the ‘‘Stairway’’ 
strategy in terms of both time and energy consumption. However, 
due to frequent failures when scooping difficult materials like river 
sand, it is reasonable to automatically select between the two scooping 
strategies.

Over a period of three days, data were randomly collected from 20 
daily material shoveling operations performed by a human operator 
using the same XCMG 968EV loader at Mixing Plant B, without prior 
notice that their operational data would be recorded. These data were 
compared with the proposed automatic shoveling system, as shown 
in Fig.  23. The average time for the manual shoveling process was 
5.26 s, while the automatic shoveling system’s average time was 5.04 s, 
slightly lower than the manual shoveling strategy. Additionally, when 
comparing the average energy consumption of both shoveling pro-
cesses, it was found that the automatic shoveling strategy (216.26 kJ) 
was 11% lower than the manual shoveling strategy (244.07 kJ). The 
proposed autonomous loader shoveling system achieves lower energy 
consumption than manual operation due to several key factors. Firstly, 
the system can predict the shoveling volume in real-time and trigger the 
shoveling action promptly based on the operational conditions, thereby 
avoiding energy losses caused by redundant movements. Moreover, the 
system ensures seamless transitions between different operations and 
selects the most suitable shoveling strategy based on the shoveling 
volume, material type, and vehicle speed, guaranteeing the completion 
of the shoveling task with minimal energy expenditure. Additionally, 
the autonomous loader system can provide accurate and timely outputs 
of the vehicle’s acceleration and boom angle information, enabling 
precise control of the loader’s power and transmission systems. The 
control system still has room for improvement. During the crowding 
phase, the system uses a pre-set fixed acceleration for advancement, 
which does not allow for real-time selection of the optimal throttle 
control based on the actual operating conditions of the vehicle. This 
limitation may lead to unnecessary energy consumption. Meanwhile, 
a significant variance in manual performance was also observed, with 
the minimum time being 4 s and the maximum time being 6 s, and the 
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Fig. 23. Randomly collected time (left) and energy consumption (right) of manual daily material shoveling operations, with mean lines exceeding those of the 
automatic shoveling method.
Fig. 24. The actual shoveling process and the changes in the semantic elevation map at Mixing Station A and Mixing Station B. (a)–(d) and (e)–(f) respectively 
document the entire process of rushing towards and contacting the pile, executing the shoveling action (retracting the bucket, raising the boom), and ultimately 
exiting. Please refer to the demonstration video at https://youtu.be/uHHbI35hjsY.
lowest energy consumption at 172.17 kJ and the highest at 310.8 kJ. 
Besides the influence of environmental factors such as the material pile, 
it is believed that the level of manual shoveling is easily affected by the 
urgency of mixing plant operations, the duration of continuous work by 
the operator, and subjective factors. In contrast, unmanned operations 
demonstrate more stable efficiency and energy consumption levels and 
can perform continuous work at high intensity for extended periods, 
which is a significant advantage of the automatic shoveling systems.

Two operation contents were randomly presented at Mixing Sta-
tion A and Mixing Station B, with the changes in intermediate work 
states and semantic elevation maps being recorded, as shown in Fig. 
24. Panels (a)–(d) depict the scene of the L955HE model unmanned 
fuel-powered loader at Mixing Station B, where the loading method 
based on semantic elevation maps and perception-triggered actions 
can handle piles of low-lying materials. Panels (e)–(h) show the scene 
of the XCMG 968EV unmanned electric loader at Mixing Station C, 
illustrating the loader’s contact with the material pile, execution of 
the ‘‘Stairway’’ scooping action, and withdrawal process. The automatic 
shoveling system is responsible for computing the vehicle’s travel ac-
celeration and joint angle control signals at the upper layer and then 
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transmitting these signals to the lower-level control units. For fuel-
powered and electric loaders, the primary difference in the lower-level 
control lies in the control variables: fuel-powered loaders adjust the 
throttle to increase travel acceleration, while electric loaders control 
torque. However, the control of arm joint angles is uniformly achieved 
through the PWM signals of the corresponding hydraulic solenoid 
valves. This hierarchical control approach enables the system to be 
compatible with both fuel and electric vehicles, ensuring good ver-
satility. It can be observed that the automatic shoveling system can 
autonomously select appropriate shoveling points, successfully com-
plete scooping operations under different material types and vehicle 
models while maintaining a high bucket fill rate, and simultaneously 
update the semantic elevation map in real-time, ensuring real-time 
and precise modeling of the surrounding environment to facilitate 
subsequent operation processes.

7.6. System adaptation

This section details the adaptation process involved in deploying 
our proposed autonomous shoveling system to a new wheel loader 

https://youtu.be/uHHbI35hjsY
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Fig. 25. Field deployment of the autonomous shoveling system on a new 
XCMG XC958EV wheel loader at a mixing station in Shandong, China.

model and a new mixing plant environment, highlighting the system’s 
transferability. The initial step involves performing precise calibration 
of key dimensional parameters and sensor intrinsic/extrinsic param-
eters using the kinematic calibration method for the arm and the 
camera–LiDAR calibration approach introduced in Section 3. These 
parameters form the critical foundation for all subsequent modules. 
Subsequently, baseline vehicle controllers are tuned, including travel 
velocity control, arm joint position control, and trajectory tracking 
control. Building upon this foundational layer, adapting the scooping 
strategy itself requires calibrating only a few key poses, such as the 
arm and joint angles during the attacking phase (where the bucket must 
remain grounded) and the target joint angles at the end of the scooping 
phase.

Two components may require additional data collection: the seman-
tic segmentation model and the shoveling volume prediction model. 
Should significant environmental differences exist (e.g., a new mixing 
plant layout), scene-specific data must be collected. The model can 
then be efficiently fine-tuned using a combination of automated SAM-
based annotation and limited manual labeling. Similarly, if material 
properties differ substantially, the volume prediction model may need 
retraining with newly collected scooping data. Importantly, inaccu-
racies in these models rarely lead to critical failures and primarily 
affect performance metrics such as bucket fill rate, cycle time, and en-
ergy consumption. The system incorporates several robustness-oriented 
design choices: the fusion of semantic and elevation data mitigates 
the impact of unstable segmentation, while inaccuracies in volume 
prediction can be compensated for by adjusting operational thresholds 
(e.g., raising the volume trigger threshold to prioritize bucket fill rate 
over efficiency). This allows the system to remain operational while 
continuously improving through data collected during deployment.

A case in point is the successful deployment of the system on a new 
XCMG XC958EV electric autonomous wheel loader at a mixing station 
in Shandong, China (as shown in Fig.  25). The calibration and baseline 
controller tuning were completed within one day. During a one-week 
trial run, perception and scooping data were collected to refine the 
models, after which the system achieved stable and efficient long-term 
operation.

8. Limitations and future work

Although our adaptive selection mechanism between the ‘‘Just in & 
out’’ and ‘‘Stairway’’ strategies has achieved a balanced performance in 
bucket fill rate, efficiency, and energy consumption across two mixing 
stations, the current switching logic still relies on relatively simple rule-
based conditions. For instance, the difficulty of scooping is currently 
determined primarily based on material type alone. This can lead to 
suboptimal decisions, such as misclassifying a challenging gravel pile as 
suitable for the ‘‘Just in & out’’ strategy, ultimately resulting in vehicle 
stoppage and an emergency switch to the ‘‘Stairway’’ strategy. Our 
observations indicate that scooping difficulty is influenced by multiple 
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factors, including the vehicle’s entry speed and material compaction 
density (Li et al., 2021). In response, we plan to develop a more 
sophisticated assessment method that integrates multi-modal state and 
perceptual information during the crowding phase to more accurately 
evaluate scooping difficulty in real time.

Furthermore, both the ‘‘Just in & out’’ and ‘‘Stairway’’ strategies 
operate largely in an open-loop manner across most control cycles, with 
fixed parameters such as throttle value and target joint angles. This 
rigidity may lead to suboptimal performance given the complex and 
dynamic interactions between the bucket and the material. Recent stud-
ies (Eriksson et al., 2024b) have introduced methods based on world 
models and reinforcement learning, which adaptively adjust the scoop-
ing strategy using real-time perception of vehicle and environmental 
states. These approaches also leverage historical scooping experiences 
to learn latent states in a world model, thereby continuously improving 
future performance.

In future work, we aim to investigate data-driven methods for 
evaluating scooping difficulty and enabling adaptive adjustment of the 
scooping strategy. This will include exploring reinforcement learning 
frameworks capable of closed-loop control and integrating predictive 
models to enhance overall autonomy and robustness.

9. Conclusions

This paper presents a novel automatic shoveling system that ensures 
the safety of the loader and its environment while balancing robust-
ness, efficiency, and energy consumption. Such a system can promote 
technological advancement and intelligent development in the con-
struction machinery industry. Initially, the system achieves automatic 
calibration of cameras and LiDAR, effectively solving the issue of long-
term calibration stability caused by severe vibrations in construction 
machinery operation scenarios. Secondly, by employing multi-frame, 
multi-sensor confidence fusion technology for pile surface perception, 
the system can achieve real-time and accurate segmentation of the pile 
surface even under environmental light interference and uneven pile 
surface shapes. Subsequently, a more comprehensive and integrated 
evaluation index for shoveling point selection is formulated based on 
the pile elevation map, which fully weighs the safety of the loader, 
environmental safety, and operational efficiency. Then, by predicting 
the shoveling volume and calculating the current shoveling volumes, 
the system enables the timely and accurate triggering of shoveling 
actions with hydraulic delay characteristics, ensuring accurate control 
of the shoveling volume and high efficiency of the shoveling opera-
tion. Finally, the loader can autonomously select the optimal scooping 
action between open-loop prediction and closed-loop feedback based 
on the actual conditions during production operations. The system 
has undergone two months of field production in three mixing sta-
tions, demonstrating stable and outstanding performance throughout 
the tasks, ensuring high efficiency and low cost of shoveling operations 
(achieving an average efficiency level comparable to manual operation 
while reducing energy consumption by 11%).
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