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ABSTRACT

Improving the automation of wheeled loaders is key to solving labor gaps and boosting safety in construction.
This paper proposes an automatic shoveling system for unmanned loaders that, for the first time, balances
safety, robustness, efficiency, and energy consumption. The system features automatic calibration of camera
and light detection and ranging (LiDAR) using large segmentation models and nonlinear optimization, ensuring
stability despite vibrations. A lightweight neural network performs semantic segmentation, and multi-frame
point clouds are fused with a confidence algorithm for accurate pile segmentation. The shoveling point
selection algorithm integrates semantic and elevation data to prioritize loader and environmental safety.
Volume prediction initiates scooping, and a shoveling strategy balances robustness and efficiency. Extensive
field tests conducted over two months with two types of loaders in three scenarios, totaling 2090 operations,
demonstrate the system’s long-term stability, high bucket full rates, efficiency matching manual operations,
and an 11% reduction in energy consumption. These results highlight the system’s potential to transform

automated construction machinery.

1. Introduction

The wheel loader is a pivotal asset in construction and a multitude
of industries, owing to its adaptability (Frank et al., 2018). Nonetheless,
conventional manual operation encounters several obstacles. Operating
a wheel loader demands a high level of skill, with operators needing
to frequently alternate between moving forward and backward while
controlling the mechanical arm (Zauner et al., 2020). The demanding
workload makes it difficult for drivers to sustain high-quality and effi-
cient performance over extended periods (Nezhadali et al., 2016; Frank
et al., 2012; Zhang et al., 2021). Consequently, there is a diminishing
interest among younger generations to pursue this career, resulting in
a labor shortage (Agrawal et al., 2023). In the specialized scenarios
such as mining, workers must wait until the dust from explosions
has settled to safe levels before they can safely enter the work area,
which greatly diminishes productivity (Cardenas et al., 2023). Although
remote control technology has been integrated into the construction
machinery sector, it remains in its infancy (Lee et al., 2022). Challenges
like network latency and the absence of sensory feedback from the field
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regarding acceleration, vibrations, and depth can affect the accuracy
and efficiency of remote operations, potentially posing safety haz-
ards (Dadhich et al., 2018; You et al., 2023). Therefore, enhancing the
automation of wheel loaders is essential for alleviating labor shortages,
increasing production efficiency, and improving safety.

Automatic shoveling system is a key component of loader automa-
tion, directly affecting task success rates, operational efficiency and
energy consumption (Filla et al., 2014). Generally, the automatic shov-
eling process primarily consists of four steps: perceiving information
about the material pile, selecting suitable shoveling points, determining
the appropriate timing for scooping, and controlling the mechanical
arm to complete the loading process (Almqvist, 2009; Hemami and
Hassani, 2009). However, automatic shoveling systems are still in the
early stages of commercial application (Dadhich et al., 2016; Fernando
and Marshall, 2020), and existing technologies face many challenges
in perception and interaction with irregular piles, such as unstable
perception outcomes, unreasonable shoveling point selection, and in-
adequate scooping action choices. Thus, optimizing various aspects of
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the automatic shoveling process is essential to advance the practical
application of unmanned loaders.

Perceiving the information of the material pile is a crucial initial
step. Compared to human operators, unmanned systems face significant
challenges in real-time acquisition of target pile information and extrac-
tion of effective features (Chen et al., 2024). Current mainstream per-
ception schemes are primarily categorized into two classes: site-based
fixed sensing and loader-based onboard sensing. In the domain of site-
based fixed sensing, Kamari and Ham (2021) proposed an automated
approach integrating deep learning with multi-view 3D reconstruction.
By employing point cloud semantic segmentation and meshing-based
volume calculation, their method achieves accurate volume measure-
ment of material piles at construction sites. Xu et al. (2022, 2024)
developed a sliding system based on the integration of a multi-echo
scanner and a rangefinder for automated real-time inventory of in-
dustrial stockpiles in indoor environments. Coupled with timestamp
synchronization and coordinate calibration algorithms, it generates
high-precision 3D point clouds of the pile surface, with volume cal-
culated via a slicing integration method. This type of scheme provides
comprehensive, stable, and clear observational coverage, yielding more
complete perceptual information. However, its drawbacks include the
necessity for site modification, leading to high hardware installation
and maintenance costs. More critically, transforming the perceived
shovel point coordinates from the fixed sensor coordinate system to
the robot’s native frame can introduce significant calibration and reg-
istration errors (Gu et al., 2025). In terms of onboard sensing, Sarata
et al. (2008) conducted pioneering research on vehicular measurement
systems, developing an automatic loading system for wheel loaders
based on a stereo vision system to dynamically detect and update pile
geometry. Koyachi and Sarata (2009) focused on perception solutions
for unmanned loaders, employing an onboard stereo vision system
(dual CCD cameras) to capture real-time images of the pile for generat-
ing 3D point cloud models. Such systems offer advantages including
high integration, ease of deployment without site modification, and
convenient setup. Nonetheless, their perceptual field of view is highly
susceptible to changes in the loader’s posture, prone to resulting in
observational blind spots. Moreover, the intense vibrations and im-
pacts during loading operations make it difficult to maintain long-term
stability of the sensor extrinsic calibration parameters, severely com-
promising perception accuracy. To address the limited sensing range of
a single sensor, Chen et al. (2024) experimented with deploying five
LiDAR units on top of the loader cabin. While this dense configuration
enhances perceptual coverage, it concurrently introduces substantial
calibration costs, accumulated errors, and significant computational
overhead. It is particularly noteworthy that although LiDAR has be-
come a mainstream choice for environmental perception due to its
excellent performance in capturing depth and scale information, it
inherently lacks the ability to perceive environmental texture features.
Consequently, some studies (Chen et al., 2022a) have incorporated
visual sensors to achieve finer material discrimination through im-
age segmentation. However, vision-based methods remain vulnerable
to variations in ambient lighting conditions, and their robustness in
practical industrial settings still requires further improvement.

Secondly, selecting and calculating the appropriate shoveling point
is another challenge for automatic shoveling systems. Research in-
dicates that the shoveling direction should be perpendicular to the
convex surface of the material pile (Lindmark and Servin, 2018). If
the shoveling direction significantly deviates, the moments on either
side of the bucket centerline will become asymmetric, leading to load
imbalance on the bucket linkage mechanism and potentially causing
overturning (Sarata, 2006). Sarata (2006) and Sarata et al. (2008)
employed a columnar model to characterize the material pile and cal-
culated the resistance exerted by the material on the bucket at various
points, considering the bucket’s trajectory, to determine the direction
of the shoveling point that offered the most balanced force distribution.
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However, this method relies heavily on a single criterion and is contin-
gent upon the accuracy of the complete three-dimensional perception
of the material surface. To mitigate the dependence on the precision
of surface perception, Magnusson and Almqvist (2011) conducted a
quadratic surface fitting on local material surface perception informa-
tion to estimate local convexity and sideload characteristics. Chen et al.
(2024) proposed a shoveling point selection scheme that integrates
four indicators: convexity, inclination, slope, and distance traveled,
further enriching the selection criteria for shoveling points. Neverthe-
less, current research primarily focuses on the safety implications of
the material pile on the loader’s shoveling process, without adequately
addressing the potential safety hazards that the loader may pose to
the surrounding environment during operation. Materials are often
indiscriminately piled in open production environments, necessitat-
ing that automated shoveling systems have a more comprehensive
understanding of the environment surrounding the material pile.

After identifying the optimal shoveling point, the loader must con-
trol the bucket to glide along the ground and approach the material
pile. Upon the bucket’s penetration into the pile, the automated system
must determine the appropriate moment to initiate control over the
bucket and boom to execute the scooping process, which constitutes
another complex challenge for automatic shoveling systems. Existing
studies predominantly employ threshold control strategies based on
passive signal triggering. For instance, Chen et al. (2024) utilized
changes in boom cylinder pressure as a control signal, while Cao
et al. (2023b,a) adopted differences in tire speed and engine torque
fluctuations as triggering thresholds, respectively. These thresholds are
typically determined empirically through experimentation to initiate
the boom movement for loading operations. However, when the loader
approaches material piles with varying shapes and properties under
different working conditions, the dynamic responses can differ signifi-
cantly, resulting in poor adaptability of fixed thresholds (Yang et al.,
2025a; Yang, 2025; Yang et al., 2025b). Excessively low threshold
settings may cause premature triggering, reducing bucket fill factor;
whereas overly high thresholds can lead to delayed activation, not only
increasing energy consumption (Yao et al., 2023) but also potentially
causing tire slippage or even equipment damage (Fernando et al., 2018;
Wu, 2003). More fundamentally, such passive triggering mechanisms
rely on lagging system response signals and fail to base decisions on
the real-time volume of material being crowded during the loading
process. For piles with irregular shapes, such as low-lying piles, it is
challenging to ensure a stable bucket fill rate. To address this, Sarata
(2006) and Magnusson and Almqvist (2011) proposed active triggering
approaches based on perceived material volume, dynamically initiating
the scooping action by evaluating the displaced material volume in
real time. However, current methods still exhibit two major limitations:
first, they do not adequately account for the inherent motion delay
characteristics of hydraulic systems (Dadhich et al., 2019); second,
they rely solely on instantaneous material volume for decision-making
without incorporating predictive mechanisms to estimate future states,
consequently restricting real-time control accuracy.

Upon determining the optimal timing for initiating the scooping
action, the selection of an appropriate scooping strategy remains a
complex challenge. Filla et al. (2014) systematically categorized four
primary strategies employed in scooping operations. Among these,
two have gained prominent adoption in both academic and industrial
contexts: the “Just in & out” strategy and the “Stairway” strategy. The
“Just in & out” strategy, as implemented by Chen et al. (2024) and
further validated in studies such as Chen et al. (2022b, 2023), utilizes
a single, continuous motion sequence. This approach is characterized
by its operational simplicity and high efficiency, making it partic-
ularly suitable for handling easily scoopable materials. However, Li
et al. (2021) demonstrated that when encountering dense or highly
compacted piles, this method is susceptible to bucket stalling, which
significantly reduces scooping efficiency and may lead to operational
failure. In contrast, the “Stairway” strategy, extensively investigated
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by Cao et al. (2023a,b), employs a multi-phase cutting process that
progressively engages the pile surface to reduce digging resistance.
This method proves more effective in challenging material handling
conditions, albeit at the cost of increased cycle time and higher energy
consumption, as quantified in earlier work by Filla et al. (2005). Cur-
rent research efforts often concentrate on optimizing a single strategy
in isolation. Consequently, as highlighted by Aoshima et al. (2023) and
further supported by Eriksson et al. (2024a), autonomous shoveling
systems struggle to maintain a robust balance between operational
reliability, efficiency, and energy consumption across varied material
properties and dynamic working environments. Furthermore, prevail-
ing technologies predominantly prioritize achieving a high bucket fill
rate, while neglecting precise volumetric control of the scooped ma-
terial. The capability to accurately regulate the loaded volume would
not only optimize material handling time and prevent overflow during
transport but also enable critical applications requiring precise mixture
ratios of multiple material types.

To address the challenges faced during various stages of automatic
shoveling, this paper proposes a low-cost, onboard sensor-based au-
tomatic shoveling system. To ensure the long-term stability of sensor
fusion under the severe vibration conditions of construction machinery,
a self-supervised adaptive automatic calibration method for cameras
and LiDAR is employed, based on the large-scale neural network model
SAM (Kirillov et al., 2023). By integrating sparse historical informa-
tion from multiple frames of fewer LiDAR sensors, real-time elevation
map (Miki et al., 2022) reconstruction of large-scale piles is achieved.
And a real-time semantic segmentation model suitable for the working
environment of loaders is trained. This fusion of semantic and elevation
information enables robust and precise pile surface segmentation under
various environmental interferences. An algorithm for selecting shov-
eling points is proposed, considering both loader and environmental
safety. Additionally, unlike passive triggering methods based on hy-
draulic pressure changes, scooping actions are triggered by material
volume, using a data-driven approach to predict the future state of the
scooping process and account for hydraulic delay characteristics. An
adaptive scooping algorithm is designed to select appropriate strategies
based on actual working conditions and adjust in real-time based on
perceived volume feedback. The proposed system has been extensively
validated through 2090 large-scale real shoveling tasks on various fuel
and electric loaders, demonstrating long-term stability and significant
advantages. To the best of the authors’ knowledge, this is the first
method capable of simultaneously considering long-term robustness,
efficiency, and energy consumption in actual open production envi-
ronments, highlighting its importance for the research and application
of automatic construction machinery. A demonstration video can be
found at https://youtu.be/uHHbI35hjsY. In summary, the contributions
of this paper include:

Proposing the first complete automatic shoveling system suit-
able for open production scenarios, addressing efficiency, energy
consumption, safety, and robustness simultaneously.

Introducing a self-supervised camera-laser automatic calibration
method based on the large model SAM and a probability fusion
method for material surface perception based on semantics and
elevation confidence, achieving precise and robust segmentation
of the material surface.

Designing a shoveling point selection algorithm that considers
semantic information from the semantic elevation map, ensuring
both loader and environmental safety.

Predicting the future state of the scooping process using a data-
driven approach to enable timely triggering of scooping actions
despite hydraulic delays. An adaptive scooping algorithm based
on shoveling volume feedback further enhances efficiency and
reduces energy consumption.
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» Demonstrating the system’s long-term stability and leadership
through extensive testing in multiple real mixing plant scenar-
ios with various types of loaders, achieving efficiency compara-
ble to skilled human operators while reducing average energy
consumption by 11%.

The main contents are as follows. Section 2 outlines the components
of our automatic shoveling system, and then Sections 3-6 explain
in detail the principles and methods of calibration, pile perception,
shoveling point decision, and shoveling control strategy, respectively.
Section 7 presents the implementation of the experiments, data collec-
tion, and results analysis. Section 8 addresses the identified limitations
and suggests avenues for future research. A concluding summary of the
study is provided in Section 9.

2. System overview

The overall framework of the proposed automatic shoveling system
is illustrated in Fig. 1, which is primarily composed of three parts:
the establishment of the semantic elevation map, the selection of
shoveling points, and the execution of shoveling actions. Specifically,
A precise calibration technique based on nonlinear optimization has
been developed for the kinematics of the arm, integrated with Inertial
Measurement Unit (IMU) sensors to achieve real-time perception and
precise control of the bucket’s attitude. Specifically, two types of LiDAR
sensors are employed: a 3D LiDAR, which is integrated with an Inertial
Measurement Unit (IMU) using Simultaneous Localization and Mapping
(SLAM) technology (Shan et al., 2020) to achieve real-time localization
of the loader and provide long-range panoramic perception; and a
solid-state LiDAR dedicated to short-range forward perception. The
perception data from both sensors are fused to construct a compre-
hensive environmental model. By integrating multi-source, multi-frame
point cloud data from these LiDAR sensors, an elevation map-based
environmental perception model is constructed. Additionally, a novel
semantic segmentation model based on a single monocular camera
and deep neural networks has been utilized to achieve semantic cog-
nition in complex operating scenarios of the loader. After calibration
of the LiDAR and camera, semantic information can be combined
with the elevation map, and an overall semantic elevation map is
formed through a confidence-based fusion algorithm, enabling precise
segmentation of the pile surface. Subsequently, each position and angle
on the pile surface line are comprehensively evaluated based on the
pile elevation map to determine suitability for shoveling. Finally, the
vehicle approaches the pile based on the location of the shoveling
point, during which the loader predicted the shoveling volume in real-
time to determine the moment for executing the scooping action. Once
the predicted scooping volume reaches the desired volume, the loader
autonomously selects an appropriate scooping strategy based on the
material type and vehicle operating conditions, with the option for
closed-loop feedback if necessary.

3. Sensor configuration and calibration

As shown in Fig. 2, to provide the automatic shoveling system with
real-time and necessary joint state of the loader and environmental
information, a variety of sensors have been installed on different parts
of the loader. Three IMU sensors are placed on the cab, boom, and
bucket, respectively, to obtain real-time attitude information of the
loader body and arm. The steering encoder is mounted at the pivot
points of the front and rear chassis to capture steering angle infor-
mation. Additionally, environmental perception equipment has been
mounted on the top of the cab, including a wide-angle monocular
camera and a solid-state laser sensor that form the forward perception
module, as well as a 16-line LiDAR for perception and localization.
The solid-state laser effectively compensates for the sparsity of forward
close-range material surface perception data associated with the 16-line
LiDAR. This setup achieves a balance between performance and cost
efficiency.
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Fig. 2. The key sensor configurations involved in the automatic shoveling
system of unmanned loaders.

3.1. Kinematic calibration of the arm

The main components of the loader arm can be simplified to rigid
links, with joints represented as hinges (as illustrated in Fig. 3). The
coordinate system M is defined at the pivot point of the arm, with
the x-axis aligned horizontally towards the front of the vehicle. Point
A represents the rotational point of the bucket, and B(x,, z,) denotes
the tip of the bucket teeth. Thus, the angles (¢, ,) between the boom
and bucket and the loader arm coordinate system M are determined as
follows:

¢ =0,-0,+ta
1=0 -0 +a )
py=0;-6;+a

Here, (6, 0,, 63) correspond to the measurements obtained from the
IMU sensors, and the parameters a; and «, denote the offset angles
between the IMU sensors and the arm linkages. Since the IMU sensors

Fig. 3. The kinematic model of the loader arm, where M is the coordinate
system of the loader arm.

are rigidly attached to the arm assembly, «; and «, are constants. Con-
sequently, the kinematic equations of the loader arm can be expressed
as:

{xb=ll cos @y + 1, cos @, @

zy =1 sing; +1,sing@,

Concurrently, an accurate calibration method is proposed by min-
imizing the error between the measured displacement of the bucket
endpoint and the calculated displacement to accurately determine the
model parameters (/,,/,,a;, a,). During the calibration phase, the end-
point of the bucket linkage is controlled to various positions (x;, z;),
where i € [1,n], and subsequently measure the positional changes
(4x;;, Az;;) at these points. By integrating the IMU sensor readings at
two distinct positions, §; = (¢', 9;,0;) and 9; = @, 95,0@, two residual
terms can be constructed:

{R?Z- = ll4x,; — (5,(9)) = %I DI

z 2 (3)
R,-j = [|4z;; — (zp(8)) — z,(I)I

where (x,(9;), 2,(9;)) and (x,(9;),z,(9;)) are the positions calculated
based on the arm model (Egs. (1) and (2)) and are functions of
(1,15, a1, @). The optimization problem is formulated as follows, and
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Fig. 4. Framework of the proposed camera and LiDAR extrinsic calibration method. Right: initial calibration with custom board. Left: automatic calibration

during operation with SAM and nonlinear optimization.

stochastic gradient descent is employed to solve this problem.

n—1
min Z(R?im + R,
URCROR) = )
1,>0,l,>0
s.t. ! 2

—r<a,ou<rm

Note that the calibration method only requires the measurement
of the bucket teeth’s displacement, without the need to measure the
absolute coordinates at each position. Since the objective function
in Eq. (4) is convex, the optimization process is insensitive to initial
values. Thus, the initial parameters can be arbitrarily chosen within the
ranges [, > 0,/, > 0,—7 < a;,a, < =. The optimization methods above
are implemented using the Ceres Solver library (Agarwal et al., 2023)
with the Levenberg-Marquardt algorithm. The solver is considered to
have converged to a stable point when the infinity norm of the gradient
vector at the current parameter point decreases to below or equal to
le-10. The larger the dataset, the more residual terms can be con-
structed, and the more accurate the results will be. Typically, to solve
for the model parameters, at least four sets of residual terms are needed,
i.e.,, n > 3. Once the parameters (/;,/,, a;,a,) are determined, the real-
time estimation of the bucket’s pose can be achieved by combining the
loader’s kinematic model with the inclination readings from the IMU
Sensors.

3.2. Calibration of the perception module

The forward perception module of the automatic shoveling system
integrates a monocular camera and LiDAR. To fuse their data for a high-
precision semantic elevation map, spatial alignment between the two
sensors via extrinsic calibration is essential. This process determines
the transformation matrix between the camera and LiDAR coordinate
systems. Since intense loader vibrations can cause calibration shifts,
and frequent manual recalibration is impractical in production, an
autonomous calibration technique is critically needed.

As illustrated in Fig. 4 and Algorithm 1, the calibration method
consists of two steps. The first step employs a method based on artificial
calibration boards (//.1-4), which is typically conducted prior to the
installation of the forward perception module onto the vehicle. As
shown in the right image of Fig. 4, each calibration board features four
square holes that can be easily detected by LiDAR and image corner
extraction algorithms. By leveraging the detected 2D-3D correspon-
dences, high-precision calibration results can be achieved according to
the method mentioned in Liu (2023). The second step leverages the
environmental automatic segmentation capabilities of the large-scale
neural network model SAM and, based on the initial values obtained
from the first step, employs nonlinear derivative-free optimization to

achieve automatic extrinsic calibration (//.6-27). This step does not
require specific calibration boards or manual intervention and allows
for the calibration of parameters between the camera and LiDAR at
any time during vehicle operation. The specific method is described
as follows:

Firstly, for each frame of image information, the SAM model is used
to generate masks for the entire image. Each mask is a binary matrix of
the same size as the image, where the value M;(u,v) € {0, 1} indicates
whether the pixel (u, v) belongs to the ith mask. All pixels within a mask
can be denoted as P, = {p|M;(p,.p,) = 1}.

Subsequently, the point cloud data is analyzed to obtain the posi-
tional information, normal vectors, reflectivity, and segment class of
each point p. The 3D point cloud data is then projected onto the 2D
image plane:

p Px

| = xr|?
Py = 5)

1 )24

1

where K represents the intrinsic parameters of the camera, and T
denotes the transformation matrix from the camera coordinate system
to the LiDAR coordinate system. The consistency score ¢ of the ith mask
is defined as follows:

€; = (WpFR(P) + oy Fy(B) + g Fs(P))f (1B D ©

Here, Fg(-), Fy(-), and Fg¢(-) represent the consistency scores for
reflectivity, normal vectors, and segmentation class, respectively. The
reflectivity consistency score is calculated from the variance of the
reflectivity values across all points (/. 20), the normal vector consis-
tency score is derived from the mean of the pairwise inner products
of all normal vectors (/. 21), and the segmentation class consistency
score is based on the weighted sum of the number of points within
each category (I. 22). wg, wy, and wg are their respective weights,
and f(-) is an adjustment function that accounts for the size of the
point set, designed to mitigate consistency loss that may arise from an
overabundance of points.

The final optimization goal can be expressed as the weighted sum
of the consistency scores of all masks:

15l
p= o o R @

The optimization problem aimed at maximizing the score p, with the
extrinsic parameter 7 as the variable, is solved using the Nelder-Mead
algorithm (Luo et al., 2024) , with convergence triggered when the
standard deviation of simplex function values drops below 1e—10 and
the maximum simplex edge length falls below 1e—8. Given the highly
nonlinear and discontinuous nature of the problem, the initial estimate
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Fig. 5. The semantic elevation map of pile perception contains six layers
of information. The bottom two layers represent the estimated height and
estimation error obtained from the fusion of multiple frames of LiDAR data.
The middle three layers represent the probability confidence of piles, ground,
and obstacles obtained from the semantic segmentation model. The top layer
represents the category information jointly determined by the fusion of seman-
tic information and elevation information.

from the first-step calibration using a calibration board is used as the
starting point for the optimization.

4. Pile perception

Accurate perception of the pile surface is essential for selecting
shoveling points and performing scooping actions. To better represent
the environment, an elevation map is used to store both category and
3D information per cell, across six layers (see Fig. 5). Multi-frame
LiDAR data are first fused to build the elevation map, providing an
estimated height and variance per cell. A semantic segmentation model
then classifies pixels and projects the results into 3D space, yielding
confidence values for each category, namely pile confidence, ground
confidence, and obstacle confidence, per cell. These confidences are
fused to determine the final semantic classification, as shown in the
Semantics layer of Fig. 5. Finally, all cells classified as pile are extracted
to generate the pile elevation map.

4.1. Material surface mapping

The elevation grid map uses sampled points to represent the envi-
ronment and supports multi-frame and multi-sensor fusion. Each cell in
this 2.5D map stores height information at its location, offering richer
environmental representation than 2D maps with lower computational
and memory costs than 3D voxel grids. To build a real-time accurate
elevation map, point cloud data are first preprocessed to remove points
occluded by the vehicle. The loader’s occupied area is abstracted as two
rectangles rotating around the steering axis, with positions calculated
from the steering encoder’s real-time readings. Considering the influ-
ence of arm posture changes on the occupied area, the length of the
front part is determined using the tip position from Eq. (2).

The elevation map is updated by fusing multiple LiDAR scans.
Limited field of view in a single frame (Fig. 6(a)) makes multi-frame
fusion with localization essential for a consistent global map. Each grid
height is updated via the Kalman filter formula:

2p— 4 52— 2- 452
e Gph +0, D, 2 O % 8
e e (8)
o, +o; o, +o,

Here, h represents the estimated height of the cell, p, is the height
measurement of the point, 0'3‘ is the estimated variance of the cell,
which is initially assigned a large value to reflect a high level of
uncertainty. crg is the variance estimated by the sensor noise model,
which is set as 02 = a,d?, where a, is a tunable parameter and d is the
distance from the point to the sensor. The estimates before updating
are denoted with a superscript ‘~’, while the updated data is denoted
with a superscript ‘+’.
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Algorithm 1 Automatic Camera-LiDAR Extrinsic Calibration

Require: Image I, Point cloud P, Initial extrinsic T;;, SAM model
Ensure: Optimized extrinsic parameters T*
1: // Step 1: Initial calibration (pre-deployment)

2: Acquire calibration board data (1;,,,4> Pooard)
3: Detect 2D corners in I, and 3D corners in P,
4: Compute T;, using (Liu, 2023)’s method
5:
6: // Step 2: Online auto-calibration
7: for each new frame (I, P) do
8: // 2.1 Image segmentation via SAM
9. M < SAM(I) > M={M,,..M,)}
10: // 2.2 Project all points to image plane
11: P, < ProjectPoints(P, Ty, K) > Project to 2D coordinates
12: // 2.3 Process each mask and compute consistency
13: for each mask M; € M do
14: // Select points projected inside mask M,
15: P, < {p € P | proj(p) € M;}
16: if | P,| < threshold then
17: continue > Skip masks with insufficient points
18: end if
19: // 2.4 Multi-modal consistency evaluation
20: r; < Var({p.r | p € P;}) > Reflectivity consistency
21: n; < Mean({{p.n,p’.n) | p,p’ € P,}) > Normal consistency
22: s; < Entropy({Class(p) | p € P,}) > Segmentation
consistency
23: € « (wgpr; + oyn; +wgs;) - f(|P])
24: end for
25: // 2.5 Nonlinear derivative-free optimization
26: T* « argmaxy Y, %ei(T)

27: Solve using the Nelder-Mead algorithm (Luo et al., 2024) with
T, as initial guess
28: end for

Fig. 6. Process of the material surface mapping. (a) shows the range that a
single-frame LiDAR sensor can perceive. (b) displays the perception range after
multi-frame data fusion. (c) shows the result of the elevation map after hole
filling. (d) presents the final established elevation map.

To clear dynamic obstacles, the system checks if a ray passes
through a cell by comparing the ray height with the cell’s estimated
height. If a point’s height p? is below the lower confidence bound h;—o;
of the elevation map at that point, the cell is marked as penetrated and
the obstacle is cleared. In scenarios with large map boundaries and high
piles, LiDAR occlusion can cause holes in the elevation map (Fig. 6(b)).
Assuming pile continuity, each hole point p;(x;, y;) is assigned the height
of its nearest neighbor (as illustrated in Fig. 6(c)):

hlx;,y;] = hlargmin((x — x;)* + (y = y)?)] ©)
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where h[x;, y;] is the height value of the point (x;, y;). Each hole-filling
operation is independent and can be efficiently parallelized on the GPU.

4.2. Semantic segmentation

To endow loaders with real-time environmental perception capabil-
ities, semantic segmentation models need to balance high performance
and lightweight characteristics on edge computing devices. Traditional
Convolutional Neural Networks (CNNs) have somewhat limited capa-
bilities in integrating global information, but their structure is partic-
ularly suitable for parallel computation, making them advantageous
for deployment on ARM platforms. On the other hand, Vision Trans-
formers (ViT) are more conducive to integrating global information
and achieving higher accuracy, but they are not suitable for edge
computing. To achieve faster inference speeds while ensuring accuracy,
we employ the TokenPyramid Vision Transformer (TopFormer (Zhang
et al., 2022)) architecture for semantic segmentation, which combines
the high performance of CNNs with the high accuracy of transformer
structures, demonstrating excellent performance on edge computing
devices.

The TopFormer network architecture consists of the Token Pyra-
mid Module, Semantics Extractor, Semantics Injection Module, and
Segmentation Head. The Token Pyramid Module, built upon the CNN
framework, processes high-resolution images to quickly generate a local
feature pyramid. Capitalizing on the lightweight nature and efficiency
of CNNs in encoding local image details, the Token Pyramid Module
employs stacked lightweight MobileNetV2 (Sandler et al., 2018) blocks
and rapid downsampling strategies for fast image processing. The Se-
mantics Extractor module, based on ViT, takes the Token Pyramid
as input to generate scale-aware semantics. The transformer-based
structure enables explicit modeling of global interactions among pixels,
obtaining richer semantics and a larger receptive field. Directly ap-
plying global self-attention to high-resolution tokens incurs extremely
high computational costs due to the quadratic complexity associated
with the number of tokens. By applying an average pooling layer
to the tokens produced by the Token Pyramid, the number can be
significantly reduced, such as to 1/(64 x 64) of the input size, thus
effectively alleviating the high computational complexity while fully
utilizing the global information integration capability of ViT. The scale-
aware semantics generated by the Semantics Extractor are injected into
the corresponding scale tokens through the Semantics Injection Module
to enhance representation capability. Finally, the Segmentation Head
executes the segmentation task using the enhanced token pyramid.

To establish a dataset for engineering machinery scenarios, the pre-
trained open-vocabulary model Grounded-SAM (Ren et al., 2024) is
utilized to generate 2D semantic segmentation labels. This model en-
ables the acquisition of 2D labels that closely match the semantics of the
given class names, facilitating the rapid construction of a real dataset.
Specifically, Grounding DINO (Liu et al., 2025) is provided with the
class names that may appear in the production scene (such as piles,
ground, pedestrians, loaders, etc.) to generate detection bounding boxes
along with corresponding logits and phrases. This information is then
passed to SAM to generate precise segmentation binary masks, with
the masks and logits jointly determining the label for each pixel. This
process achieves automated dataset construction and annotation, ulti-
mately training a semantic segmentation model that is both lightweight
and high-accuracy, well-suited for engineering machinery scenarios.

4.3. Semantics—elevation fusion

As shown in Fig. 7, segmenting the pile surface using only height in-
formation can lead to significant errors, due to inaccuracies in manually
set ground height thresholds and height perception. Fig. 7(a) shows an
irregular thin material pile during shoveling, and Fig. 7(c) demonstrates
the result of height-based segmentation. Because of uneven ground
perception and difficulty in determining accurate height ranges, the
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elevation map fails to include the thin pile in front of the loader. In
comparison, the semantic segmentation model accurately identifies this
area (Fig. 7(b)), enabling complete surface reconstruction including the
thin pile (Fig. 7(d)). Thus, integrating semantic information is essential
for accurate pile surface segmentation.

The semantic segmentation model infers per-point semantic labels
in pixel space, which are projected into 3D space via Eq. (5) to obtain
the semantic category confidence for each cell (4|, p,, f;), where p|, p,
and p; represent the probability that the cell is part of the ground,
material, and other objects, respectively. We now provide a detailed
explanation of how to achieve accurate pile surface segmentation by
fusing semantic segmentation confidence with elevation map data.

First, the method for calculating the probability of a location being a
material pile or the ground based solely on the elevation and variance
layers of the elevation map is considered. The height information of
points in the elevation map is modeled as z ~ N'(h,62). All points in the
scene where z < z, are extracted as ground for plane fitting, where z is
an empirically determined fixed value. The RANSAC method (Fischler
and Bolles, 1981) is employed to filter out outliers and determine the
plane equation of the ground z’ = z/(x,y) and the fitting variance o2.
Consequently, for each grid in the elevation map, the height category
confidence that it is part of the ground is considered p,, while the height
category confidence that it is the pile is p, = 1 — p;, where:

_x=h?

L 2 dx 10)

Z'+o,
D =P(z<z'+az)=/
- 276,

Then, the semantic information and height information are inte-
grated to assign a category for each cell in the semantic elevation map.
If the semantic category is naively adopted as the definitive category,
poor environmental lighting may affect the accuracy of the semantic
segmentation results, leading to errors in the modeling of the semantic
elevation map (as shown in Fig. 8(1)). Here, inspired by soft voting
in ensemble learning, the semantic category confidence and the height
category confidence are summed, and the category with the highest
total confidence is selected. This approach helps to reduce the impact of
environmental lighting on the model, enabling accurate modeling of the
material surface (as illustrated in Fig. 8(2)). For safety considerations, if
the semantic segmentation identifies the highest probability of a certain
area being an obstacle category, then that area is directly considered
as an obstacle. The final classification result can be expressed as:

Obstacle, if p; > max(p;, p,),
Clx;,y;] = 4 Pile,
Ground,

else if p; + p; < py + by, an
otherwise.

By integrating the class information for each cell with its cor-
responding height data, an accurate semantic elevation map is con-
structed. From this map, all cells classified as ‘pile’ are extracted to
generate a dedicated pile elevation map.

5. Shoveling point selection

The position of the shoveling point refers to the two-dimensional
coordinates (x;, y;) and the entry angle §,, at which the bucket first con-
tacts the pile surface during the shoveling process. To ensure the safety
and efficiency of the shoveling process, the feasibility of each boundary
point is evaluated based on the pile elevation map M, considering the
risks of the loader overturning, colliding, or getting damaged, as well as
operational efficiency to select the optimal shoveling point. As shown
in Algorithm 2, given the loader’s initial position p, and the shoveling
point (x;, y;, 8,,), the loader needs to plan a path I, between these two
points, travel along this path to reach the point (x;, y;) with an entry
angle of §,,. This process is simulated, and scores for each indicator
are calculated, which are then weighted to obtain the overall score for
this point. Finally, the shoveling point and orientation with the highest
score are selected.
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Fig. 7. (a) shows the real production scene of the thin material pile in front of the loader. (b) displays the result of semantic segmentation in pixel space of the
loader’s front view. (c) represents the result of pile surface segmentation based solely on height thresholds. (d) is the result of pile surface segmentation after
fusing height confidence and semantic confidence, indicating that incorporating semantic information is essential for material surface segmentation.
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Fig. 8. Comparison of two fusion methods in dim lighting conditions. Method
(1) directly uses semantic categories for classification, resulting in noticeable
defects in the segmented pile area highlighted in the red box. Method (2)
fuses semantic confidence with elevation confidence, significantly mitigating
misclassification issues.

5.1. Torque balance score s,

When the material pile is unevenly shaped, unequal torques act
on the bucket ends. An excessive torque difference can damage the
steering mechanism or even cause the loader to overturn. Hence, the

Algorithm 2 Shoveling Point Selection

Input:
Pile elevation map M
Loader initial state p,
Set of candidate shoveling points P = {(x;,y,)}
Set of candidate entry angles 4 = {45,,}
Safety thresholds: T, dyess Kmax
Weight coefficients: k,, kg, k., k,, k,
Output:
Optimal shoveling point (x*, y*) with entry angle 5*
Initialize:
best_score « —o
best_point < None
best_angle < None
for each candidate shoveling point (x;,y;,) € P do
for each candidate entry angle §,, € 4 do
I, < PlanPath(p, (x;, ;). 6,,)
, < CalculateTorqueScore(M, x;, y;, 6,,, Tres)
s < CalculateSafetyScore(I; ,,, M, )
s, « CalculateConcavityScore(M, x;, y;,5,,)
. < CalculateEfficiencyScore(I; ., I')
s, « CalculateAngleScore(I ,,, Kmayx)
Fe—ki-s;+kg-sg+k,-s.+k, -s,+k, s,
if F > best_score then
best_score « F
best_point < (x;, y;)
best_angle « §,,
end if
end for
end for
return best_point, best_angle

v

©

overturning torque is estimated using a simplified model:

T.= ) hyhp (12

i,jEQ
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where h; ; represents the height of that point in the semantic elevation
map, 4; denotes the lateral distance from that point to the center of
mass of the bucket (with left being positive), and @ indicates the set
of points on the pile covered by the bucket. Accordingly, the torque
balance score is calculated as:

1= (LY it <7

- < , 1 < s

s, = (Tres ) ¢ res (13)
—00, otherwise,

where T, represents the set safety threshold. If the torque exceeds this
threshold, there will be a significant risk of overturning, making that
loading point not recommended. As the torque approaches the thresh-
old within a certain proximity, the score drops sharply; conversely,
when the torques on both sides are comparatively balanced, the score
approaches one.

5.2. Safety distance score s

The probability of collision during the shoveling process is generally
related to the distance from obstacles. During attacking phase, a certain
safety distance from obstacles d,,, should be maintained. Let the area
covered by the loader during the process be A, and the area identified
by semantic information as containing obstacles be P. The minimum
distance d,,;, between the two areas is evaluated. The safety distance
score is calculated as:

1’ if dmin > drex’
s, =4 22 elseifd,,;, >0, a4

—co, otherwise.
5.3. Concavity score s,

The concavity of the pile has a significant impact on the forces
experienced by the loader. Related studies suggest that to improve
operational efficiency, the loader should vertically penetrate the pile
and shovel at raised positions, as concave piles introduce greater bucket
resistance and adversely affect bucket fill rates. To estimate the concav-
ity at the point, this method employs a three-section bucket model. The
future shoveling area is uniformly divided into three sections according
to the bucket width, with volumes denoted as V}, V,,, and V, for the left,
middle, and right sections, respectively. A shoveling point is classified
as convex if the volume in the middle section surpasses the maximum
volume of the two side sections; otherwise, it is deemed concave. The
concavity score is calculated using the formula:

I,
s, = 0

5.4. Efficiency score s,

if V,, > max{V}, V,},

. (15)
otherwise.

In ensuring safety, loaders generally tend to choose points that are
closer in order to enhance operational efficiency. The trajectory length
corresponding to the current point is denoted as /; .. For all trajectories
T corresponding to all candidate shoveling points on the same pile, the
length of the longest trajectory is denoted as /,,,,, and the length of the
shortest trajectory is denoted as /,,;,- The efficiency score is calculated
using the formula:

Lax — i
5, = max im ) 16)

lmax - lmin
5.5. Entry angle score s,

When shoveling materials, the angle between the front and rear
axles of the loader should not be excessively large; otherwise, the
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lateral pressure on the hinge during entry into the pile increases, raising
the risk of structural damage or even tipping over. The angle between
the front and rear axles is related to the curvature at the end of the
trajectory, denoted as «;,. Therefore, during production operations,
the loader should avoid exceeding the permissible curvature x,,,, while

minimizing the trajectory end curvature to ensure safety. The entry
angle curvature score is calculated using the formula:

|Ki,m|

Kmax

s, =1-

a7
Finally, the comprehensive score for the shoveling point is obtained
by weighting all indicators:

F=k s, +ky-sg+k,-s.+k, s, +kg s, (€F))

where k,, kg, k.. k,, k, corresponds to the weight of the respective score
indicator. This calculation method effectively helps to avoid exces-
sive overturning moments, collisions, and other situations that could
damage the vehicle and threaten environmental safety. To determine
these parameters, we collected elevation maps of material surfaces
along with the positions and orientations of both the vehicle’s starting
point outside the bin and the final selected scooping points during
routine operations by expert operators. This process resulted in a
human-optimized dataset comprising 482 distinct scenarios. We then
employed the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm to optimize the weighting parameters, with the objective
of minimizing the discrepancy between the algorithm-selected scooping
points and those chosen by the human operators across all scenarios.

6. Shoveling control strategy

The process of shoveling can essentially be divided into three
phases: the attacking phase before contacting the pile, the crowding
phase while contacting and continuing to advance, and the scooping
phase during which the shoveling action is executed. The goal of
shoveling control is to select an appropriate triggering method that
enables the automatic loader to transition from the crowding phase to
the scooping phase, and to execute the appropriate shoveling strategy
during the scooping phase. In this work, the timely triggering of the
scooping action is achieved by estimating accurate shoveling volume
through perception and predictive algorithms, and an adaptive scoop-
ing strategy selection algorithm is proposed based on the two improved
scooping strategies.

6.1. Shoveling volume estimation

The volume of material being shoveled refers to the combined
volume of material handled during the crowding and scooping phases
of a single loading task, which includes the current shoveled volume
V, and the future shoveling volume ¥, (as shown in Fig. 9).

Due to the inherent delays in signal reception and response of the
automation program, as well as the response of the hydraulic actuators
to PWM commands, the loader scoops a portion of material, denoted as
V5, from the moment the scooping command is issued until the actual
initiation of the scooping action, as indicated by the ‘Delay’ label in Fig.
9. Subsequently, as the loader’s arm moves to execute the scooping
action, it scoops an additional portion of material, denoted as V,,, as
shown in the ‘Control’ segment of Fig. 9. Consequently, the total volume
of material that will be scooped in the future is the sum of these two
volumes, expressed as V, = V,; + V>,.

The current real-time volume of material being shoveled can be
calculated based on the pile elevation map:

Vi=Y(h—h)- e, 19
i€

where h; represents the estimated height corresponding to the ith cell

in the semantic elevation map, 2 denotes the region of the elevation
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Fig. 9. The shoveling process of a loader consists of three stages: Attacking,
Crowding, and Scooping. The total volume of material shoveled includes the
current shoveled volume ¥, and the future shoveling volume V,, which is
further divided into the delayed portion V,, and the scooped volume V,,.

map traversed by the bucket teeth during the shoveling process, #’; is
the height of the bucket teeth when it passes over the ith cell, and ¢
is the resolution of the semantic elevation map. The calculation of the
volume covered by the bucket begins upon contact with the material
pile, and this value incrementally increases as the shoveling operation
progresses.

The future shoveling volume is equivalent to the amount of material
that can still be shoveled by the bucket if it enters the scooping phase
at this moment, and can be predicted by estimating the trajectory of
the bucket, which essentially involves penetration depth prediction.
The speed of the loader during the scooping phase is a time-varying
function. Due to the unpredictable resistance encountered during this
process, influenced by multiple factors such as material type and pile
shape, it is challenging to model the true physical dynamics of the
loader’s movement during shoveling. Therefore, a data-driven approach
is adopted, using Support Vector Regression (SVR) to forecast the pene-
tration depth. This model estimates the nonlinear relationship between
several input variables that may affect the future shoveled volume
and the penetration depth. The influencing factors mainly include the
current speed v, the instantaneous shoveled volume V;, the material
type M, and pile geometry (in this case, six points are taken along the
depth direction with a horizontal spacing of 4/ = 0.5 m on the pile
surface in the loader’s field of view, denoted as h = (hy, hy, ..., h¢)).
The six-point elevation sampling strategically balances computational
efficiency with spatial resolution, capturing critical inflection points
in pile topography that dictate force distribution during penetration.
Such physically-grounded feature engineering ensures the SVR model
effectively predicts the penetration depth in real-time during each
shoveling process. The loader’s position during shoveling can then be
calculated based on the penetration depth, and combined with Eq. (2)
to calculate the motion trajectory of the bucket teeth. Finally, using
Eq. (19), the future shoveling volume can be calculated. By adding the
current shoveled volume to the future shoveling volume, the volume of
material that the loader’s bucket can obtain in a single operation can
be determined. Controlling the loader based on the total volume allows
for real-time and precise triggering of scooping actions.

6.2. Scooping operations

The “Just in & out” strategy involves rotating and retracting the
bucket to a certain height, followed by lifting the boom to a specific
angle to complete the scooping. In contrast, the “Stairway” strategy
entails slightly lifting the boom, then retracting the bucket by a small
angle, pausing for a period, and repeating this process multiple times.
The performance of the loader using these two strategies during the
scooping phase is shown in Figs. 10(a) and 10(b). Retracting the bucket
to a designated angle and lifting the boom to a designated angle can be
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considered as two distinct atomic actions. The “Just in & out” strategy
requires the execution of one set each of retracting the bucket and
lifting the boom atomic actions, which is suitable for materials with
low resistance, thus offering high efficiency and low energy consump-
tion. Conversely, the “Stairway” strategy divides the bucket retraction
action into multiple sets of atomic actions executed intermittently to
cut through the material, which is suitable for materials with high
resistance. As the number of atomic actions increases, the shoveling
efficiency decreases, and energy consumption rises.

Improvements have been made to both strategies. For the “Just in &
out” strategy, an open-loop predictive approach is employed, executing
the scooping action directly when the predicted shoveling volume
reaches the target value. This method allows for more precise control
of the shoveling volume and faster shoveling compared to traditional
perception-triggered methods without shoveling volume prediction (as
shown in Figs. 10(c) and 10(d)). For the “Stairway” strategy, a feedback
loop between atomic actions is incorporated to assess the real-time
scooping volume, allowing the scooping to be completed once the
volume reaches the target value, rather than setting a fixed number
of bucket retraction atomic actions. This approach ensures the prompt
and accurate triggering of the “Just in & out” strategy and minimizes
the operational time and energy consumption of the “Stairway” strat-
egy. Additionally, it leverages open-loop prediction and closed-loop
feedback to precisely control the shoveling volume.

Algorithm 3 Shoveling Strategy Selection

1: Attacking recommended shoveling point

2: Calculate the current shoveling volume V;

3: while ¥} > 0, Crowding do

4: Calculate the current shoveling volume V;

5: Retrieve the material type y

6: Estimate V, based on penetration depth prediction
7: if V] +V, >V, then

8: if y € Y then

9: Scooping using the "Stairway" strategy
10: else
11: Scooping using the "Just in & out" strategy
12: end if
13: else if V; >0 and v ~ 0 then
14: Scooping using the "Stairway" strategy
15: end if

16: end while

Additionally, an adaptive shoveling algorithm capable of flexibly
employing the two strategies is proposed, as illustrated in Algorithm
3. Initially, during the attacking phase, the loader controls the bucket
to stay close to the ground and navigates along the planned trajectory,
advancing towards the chosen loading point. As the bucket impacts
and penetrates the material pile, the crowding phase commences, with
real-time computation of V; and V,. If V| + V, reaches the target
loading volume V,, the scooping phase is initiated. In this phase, a
preliminary scooping strategy is determined based on the material
type y: for difficult-to-load materials such as river sand (y € Y),
the “Stairway” strategy is selected; for easy-to-load materials such as
crushed gravel, the “Just in & out” strategy is chosen. If V; + V, is less
than the target loading volume but the loader cannot proceed further
(V, > 0 and v =~ 0), it directly enters the scooping phase and adopts
the “Stairway” strategy, utilizing closed-loop feedback for stable and
precise control. It should be noted that the vehicle stopping determi-
nation (v ~ 0) employs a lightweight yet robust mechanism based
on confidence thresholds and hysteresis logic. In each control cycle,
if the vehicle speed is below 0.15 m/s, the confidence level increases
by (0.1 — v) x 100. When the speed exceeds 0.15 m/s, the confidence
level is reset to zero. A stopping state is confirmed once the confidence
level reaches 100. After completing the scooping action, the bucket’s
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Fig. 10. Comparison of different shoveling strategies. (a) pressure-triggered “Just in & out” strategy, (b) pressure-triggered “Stairway” strategy, (c) perception-
triggered “Just in & out” strategy without shoveling volume prediction, (d) perception-triggered “Just in & out” strategy with shoveling volume prediction.

upper edge is leveled, and the material is vibrated to prevent overflow
during transportation, before the loader begins to retreat and convey
the material. Based on this strategy selection algorithm, the system
can autonomously choose the optimal scooping strategy according to
the material type and vehicle operation conditions, achieving timely
triggering of the scooping phase through open-loop prediction and
timely completion of scooping actions through closed-loop feedback,
thereby balancing robustness, efficiency, and energy consumption.
The underlying control architecture implements a multi-layered ap-
proach for precise material handling operations. For manipulator joint
regulation, a PID-based position controller with solenoid valve dead-
zone compensation governs the boom and bucket articulation, utilizing
pre-calibrated target angles optimized for distinct shoveling phases.
The propulsion system employs an acceleration-oriented PID velocity
controller, derived from comprehensive throttle-brake acceleration pro-
filing, which maintains constant speed regulation during attacking and
crowding phases before transitioning to fixed acceleration control upon
scooping initiation. Wheel slip mitigation is achieved through predic-
tive material volume estimation rather than direct slip detection, with
real-time motion state prediction algorithms preemptively compensat-
ing for potential traction loss through timely bucket actuation that
reduces material accumulation resistance ahead of the implement. This
integrated approach ensures coordinated electromechanical response
while eliminating reliance on explicit slip monitoring subsystems.

7. Experiments and results

To validate the performance and applicability of the proposed sys-
tem, field production experiments were conducted over two months us-
ing two different models of loaders (SDLG L955HE and XCMG 968EV)
at three real mixing station scenarios in Shanghai, Hangzhou, and
Lanzhou, China (referred to as Mixing Station A, B, and C, respectively).
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Table 1

Parameter list.
Parameter name Symbol Value
Reflectivity weight wg 0.20
Normal vectors weight oy 0.30
Segmentation weight wg 0.50
Noise parameter ay 0.05
Resolution of elevation map 3 0.30
Torque balance weight k, 0.29
Safety distance weight ky 0.23
Concavity weight k. 0.13
Efficiency weight k, 0.25
Entry angle weight k, 0.10

Fig. 11. The surface plot of the calibration cost function as it varies with the
errors in the calibration parameters.

The experimental equipment primarily included a computing platform
(NVIDIA Jetson Orin with a 12-core ARM Cortex-A78 CPU, 64 GB RAM,
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Fig. 12. Camera-laser projection results before and after the automatic calibration.

Fig. 13. Fusion results of the semantic elevation maps before and after the automatic calibration.

and NVIDIA Ampere 2048-CUDA GPU), a SENSING monocular camera
(model SG3S-ISX031C-GMSL2F, resolution 1920H x 1536V, frame rate
30 fps), a VanJee WLR-720 16-line laser, and a DJI Livox Avia front
perception laser. The entire autonomous shoveling system is deployed
on an edge computing device (Jetson Orin). The underlying trajectory
control, travel velocity control, and joint position control operate at a
frequency of 100 Hz. The semantic segmentation model and elevation
map update are deployed on the GPU, with the semantic elevation map
and shoveling point selection updated at a frequency of 7 Hz. Shoveling
action execution and strategy selection are implemented via a state
machine with an output frequency of 20 Hz. The parameters used and
their corresponding values are shown in Table 1.

7.1. Calibration results

The kinematic calibration data collection for XCMG 968EV loader’s
arm utilized a low-cost laser rangefinder. Seven sets of end-effector dis-
placement data with corresponding IMU sensor readings were recorded
across different arm postures. Fig. 11 demonstrates the variation of
calibration cost function surfaces with parameter errors (I;,1,,a;, ay),
revealing a distinct global minimum that facilitates straightforward
optimization. Calibration results showed a boom length of 3.13 m,
deviating merely 0.02 m from the official 3.11 m specification. Sim-
ilarly, the bucket length measurement yielded 1.263 m, differing by
0.032 m from the documented 1.295 m. Both discrepancies remained
within 1% tolerance thresholds. These experimental outcomes validate
the practical precision of the implemented arm kinematic calibration
methodology.

An extrinsic calibration experiment was subsequently performed on
the forward perception module containing a monocular camera and
solid-state laser sensor. As depicted in the left panel of Fig. 12, after a
period of operation, there was a deviation in the projection relationship
between the camera and the laser. Application of the SAM-based au-
tomatic calibration methodology yielded precise extrinsic parameters,
evidenced by the corrected projection state marked with a red border in
the corresponding right panel. Comparative analysis of semantic eleva-
tion map fusion outcomes, shown in Fig. 13, demonstrates performance
improvements through automatic calibration. The left panel exhibits
erroneous fusion patterns involving construction elements like mate-
rial piles and walls, while the right panel displays accurately aligned
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Fig. 14. Loss function variation during the semantic segmentation model
training.

semantic fusion after calibration. These visual comparisons confirm
that the automatic calibration algorithm effectively enhances semantic
fusion precision through improved calibration accuracy. Notably, the
implemented solution eliminates dependency on specialized calibra-
tion artifacts or manual adjustments during operation, rendering it
particularly advantageous for vibration-prone construction equipment
requiring frequent recalibration.

7.2. Material surface perception results

In this section, the results of semantic segmentation and semantic-
height fusion are introduced, showcasing the effectiveness of the pro-
posed techniques in accurately perceiving and interpreting the material
surface within the context of automated loading operations.

7.2.1. Semantic segmentation

A dataset of 3800 images capturing diverse environmental condi-
tions and observational perspectives from typical scenarios at mixing
stations was collected. Automatic segmentation of ground surfaces,
material piles, loaders, and other obstructions was performed using
the Segment Anything Model (SAM). Following manual verification of
the automated segmentation outputs and categorical annotation, the
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Fig. 15. Variation of the IoU metrics for different categories during the training of the semantic segmentation model.

dataset was randomly partitioned into 3500 training samples and 300
validation samples. Notably, the SAM framework significantly reduced
manual annotation efforts while maintaining cross-frame segmentation
consistency. To enhance model robustness and generalization, training
images underwent spatial transformations including random scaling,
non-uniform cropping, aspect ratio distortion, and horizontal flipping,
with final resampling to 480 x 383 px resolution.

The training protocol was implemented on an NVIDIA A30 GPU-
accelerated workstation using the Adam optimizer (learning rate
0.0003, batch size = 16). The model hyperparameters for Semantic
Segmentation TopFormer and SAM are shown in Tables 2 and 3, re-
spectively. As depicted in Figs. 14 and 15, model convergence occurred
after 200k iterations (3-hour duration), achieving a final training loss
of 0.014 and mean intersection-over-union (mlIoU) of 97.32%, with
per-class IoU metrics surpassing 90%. Experimental validation across
varying illumination conditions (optimal, high-intensity, and low-light
environments) demonstrated the model’s environmental robustness, as
illustrated in Fig. 16 showing input—-output pairs from test scenarios.

The implemented architecture exhibits real-time performance with
6 ms inference latency on Jetson Orin edge devices, characterized by
1.4M parameters and 0.5G FLOPs computational complexity. Quanti-
tative evaluations confirm the model’s capacity to maintain segmenta-
tion precision under photometric interference, accurately delineating

Fig. 16. Results of the semantic segmentation field tests, where different categories are marked in different colors (Red: unmanned loader, Yellow: other loaders,
Blue: passable area, Green: material pile, Black: other areas).

Table 2
Semantic segmentation TopFormer model hyperparameters.
backbone decode_head

num_classes 7
in_channels [128, 128, 128]

num_heads 4
in_channels [16, 32, 64, 96]

out_channels [None, 128, 128, 128] out_channels 128
depths 4 dropout_ratio 0.1
c2t_stride 2 loss_type CrossEntropyLoss

ground features, material piles, pedestrians, loaders, and environmen-
tal obstacles. Comparative analysis reveals computational efficiency
advantages over conventional segmentation networks while maintain-
ing competitive accuracy metrics, rendering it particularly suitable
for construction machinery applications requiring resource-constrained
deployment.

7.2.2. Perception fusion

To verify the accuracy of the perception fusion, a moment’s ma-
terial surface segmentation result was randomly selected from Mixing
Station B. As shown in Fig. 17, the mixing station comprises eight
material bins, each containing material piles of varying capacities and
shapes. Other loaders are parked in bins 5 and 8, while bins 6 and
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Table 3
Semantic segmentation SAM model hyperparameters.
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image_encoder prompt_encoder

mask_decoder

encoder_depth 32 image_embedding_size
embed_dim 1280 embed_dim
num_heads 16 mask_in_chans

(64, 64) num_multimask_outputs 3
256 iou_head_depth 3
16 iou_head_hidden_dim 256

Fig. 17. Perception results of the material surface at the Mixing Station B. Our proposed perception fusion algorithm effectively filtered out interference from
various objects, such as parked loaders (e.g., bins 5 and 8) and fences(bins 6 and 7), while also achieving precise perception of material surfaces with different

shapes(bins 1-4).
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Fig. 18. The perception consistency results of the pile segmentation. Arrows indicate the position and direction of the unmanned loader.

7 are randomly cluttered with obstacles, including fences and other
debris. The algorithm was able to detect these anomalies and accurately
segment the material surface lines, demonstrating the accuracy and
reliability of the method for material surface segmentation based on
the fusion of semantic and elevation information. The consistency of
the material surface segmentation results under different perception
perspectives and distances was also validated. Processes of unmanned
loaders performing loading operations in different bins within the mix-
ing station were randomly selected to simulate variations in perception
distance and perspective of the sensor towards the material piles. The
segmentation results of the material surface lines were recorded as the
loader was in different positions. As shown in Fig. 18, the greater the
coincidence of the material surface lines in each bin, the more similar
the positions of the material surface lines perceived by the loader from
different locations, indicating more stable perception results. It can
be observed that the contours and positions of the material surface
lines perceived by the loader at different locations and moments during
the operation in the mixing station are similar. This similarity in the
material surface perception results indirectly illustrates the perception
accuracy of the proposed algorithm.
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7.3. Shoveling points selection

We selected several typical regular and irregular pile surface profiles
from three mixing stations and conducted comparative tests with a
state-of-the-art shovel point selection algorithm (Chen et al., 2024). As
illustrated in Fig. 19, the top 20 scoring shovel points and the optimal
shovel point for each surface type are identified and marked with white
and red arrows, respectively. For the relatively flat pile in Fig. 19(a),
the shovel points are evenly distributed along the surface, and the
optimal points recommended by both methods are generally similar.
However, for the second irregular surface in Fig. 19(a), Chen’s method
selects an optimal point closer to the lower region. Comparing the
remaining surfaces in Fig. 19(a) and (b), we observe that the primary
distinction between the two methods is that our approach tends to
recommend safer shovel points. For instance, in Fig. 19(c), our optimal
point is farther away from the parked loader and the wall.

To quantitatively evaluate the performance, we performed actual
shoveling operations on three surfaces with significant selection dif-
ferences: the second surface (Scenario a) in Fig. 19(a), the second
(Scenario b) in Fig. 19(b), and the third (Scenario c) in Fig. 19(c).
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Fig. 19. Performance comparison of shoveling point selection methods across various pile surfaces. Each material surface features 20 candidate shoveling points
marked with white arrows, and the most suitable shoveling point is indicated with a red arrow. The three material surface scenarios (Scenario a, b, ¢) used for

the bucket fill rate comparison are labeled.

Table 4

Comparison of bucket fill rates for different shoveling point selection methods.
Method Scenario a Scenario b Scenario ¢
Chen’s approach (Chen et al., 2024) 80.37% 97.46% 0%
Our approach 93.88% 96.93% 95.98%

Using a perception-triggered “Stairway” shoveling strategy uniformly,
we conducted five repeated trials for each scenario. As summarized in
Table 4, our method achieved a higher bucket fill rate in Scenario a. In
Scenario b, both methods yielded comparable bucket fill rates, but the
shoveling point of Chen’s method required a longer navigation time due
to its more distant location. In Scenario c, the shovel point selected by
Chen’s method posed a collision risk behind the parked loader, making
it unsuitable for practical shoveling. The results demonstrate that the
scoring metrics and weights incorporated in our method successfully
account for a wide range of scenarios encountered in actual production.
This enables the loader to select reasonable shoveling points when
faced with different material surface shapes, ensuring the loader’s own
safety while also reducing safety threats to the environment.

7.4. Shoveling control strategy

In this section, the results of shoveling volume prediction and
shoveling strategy selection are introduced, followed by a quantitative
comparative analysis of different shoveling control strategies.

7.4.1. Shoveling volume estimation

To establish a model between travel distance and various factor
variables, 991 instances of real shoveling data were collected over a
60-day period at Mixing Station C. The training and validation set
ratio was set to 8:2. The performance of the model trained on the
training set is shown in Fig. 20. The left subplot displays the ground
truth and predicted values for all test samples, where the solid blue
curve represents the actual travel distance and the blue points represent
the predictions made by the model. The right subplot shows the error
distribution across different material types. The model’s absolute error
predictions on the test set are within 0.1 m for 75.2% of the points,
within 0.15 m for 94.3% of the points, and within 0.2 m for 99% of the
points, with a mean squared error of 0.0843. The experimental results
indicate that our model can fit the travel distance well within a certain
error range.

To test the accuracy of the shoveling volume predictions, field
tests were conducted by comparing the predicted bucket path with
the actual path of the loader. The distance the loader will continue to
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travel and the expected bucket teeth trajectory at a certain moment
were predicted, and the loader was enabled to enter the scooping
phase. Fig. 21 illustrates four intermediate states during the loader’s
scooping process along with the actual arm postures, with the red line
representing the predicted trajectory of the bucket teeth. Stage (a)-(b)
indicates the vehicle’s travel due to hydraulic delay, stage (b)-(c)
represents the process of the loader retracting the bucket, and stage
(c)-(d) shows the loader raising the boom and exiting. The highlighted
yellow square area in Figure (d) indicates the actual volume of material
shoveled by the loader. It is evident that the algorithm can accurately
predict the loader’s future shoveling process and calculate the volume
based on the predictions. Meanwhile, we observed that the time delay
between triggering the scooping action (current scoop volume: 1.505
m3, predicted volume: 1.708 m?) and the actual movement of the
arm (current scoop volume: 2.962 m?) is approximately 0.6 s, which
is caused by computational latency and hydraulic control delays. The
final scoop volume reached 3.349 m>. Therefore, the proportion of V21
(1.457 m?) in V2 (1.844 m3) amounts to 79%, indicating a segment that
deserves significant attention. The proposed distance-based prediction
method achieves a final volume prediction accuracy of 92.6%.

7.4.2. Shoveling control comparison

As shown in Table 5, we conducted a quantitative comparative anal-
ysis of the phase-specific performance and final bucket fill rates under
different scooping strategies. The distinctions among these strategies lie
in both the scooping trigger condition (pressure-based vs. perception-
based) and the action policy executed during the scooping phase. Here,
“Stairway” refers to an approach where the number of “Stairway”
motions is dynamically adjusted based on real-time perceived volume,
while “auto-selection” denotes the use of rules from Algorithm 3 to
choose between the “Just in & out” and “Stairway” strategies. The last
row corresponds to operational data collected from an expert wheel
loader operator. Each strategy was tested five times with gravel and
five times with sand, and all metrics were averaged to mitigate the
impact of single-trial variability. The bucket fill rate was quantified via
a perception laser system installed above the mixing station yard, with
implementation details referenced from Chen et al. (2025). According
to the results, the pressure-triggered “Stairway #3” strategy achieved
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Fig. 20. The performance of the penetration depth prediction on the dataset. (left) The blue curve indicates the true values of the penetration depth, and the
green scatter points represent the penetration distances predicted by the model. (right) Error distribution across different material types.

Table 5

The impact of different shoveling strategies on phase-specific metrics and the final bucket fill rate.

Method Crowding Scooping Bucket fill rate
Trigger Scooping strategy Time (s) Energy (kJ) Time (s) Energy (kJ)

Pressure “Stairway #3” 3.75 57.9 6.34 247.8 98.3%
Perception “Stairway #3” 0.32 12.7 6.51 242.5 98.8%
Perception “Stairway” 0.41 11.9 5.78 224.9 97.9%
Perception “Just in out” 0.36 13.6 4.45 195.4 82.4%
Perception Auto-selection 0.39 12.8 4.85 213.7 97.8%

Manual Manual 1.02 30.6 4.89 217.8 98.1%

Fig. 21. Comparison between the model-predicted bucket trajectory (red line)
and the actual situation, and the yellow areas in the elevation diagram
indicate the actual shoveled volume. (a)-(b) represents the process of vehicle
movement due to hydraulic delay, (b)-(c) represents the process of the loader
retracting the bucket, and (c)-(d) represents the process of the loader raising
the boom and exiting.

a relatively high fill rate but consumed the most time and energy.
In contrast, our proposed perception-triggered method significantly
reduced the triggering time for the scooping phase (from 3.75 s to
0.37 s) and lowered energy consumption (from 57.9 to 12.8 kJ).
The choice of scooping strategy also had a considerable impact on
the final bucket fill rate. Although “Just in & out” resulted in faster
scooping times, it led to a lower bucket fill rate of only 82.4% in high-
resistance scenarios such as sand handling. Compared with “Stairway
#3”, the adaptive “Stairway” strategy, assisted by perceptual feedback,
reduced unnecessary motions with only a marginal decrease in bucket
fill rate, thereby shortening the total scooping duration and cutting
energy use. Our proposed ‘“auto-selection” method, which integrates
three key mechanisms (perception-based triggering, dynamic policy se-
lection, and feedback-controlled adjustment of “Stairway” repetitions)
achieved overall performance, demonstrating balanced improvements
in bucket fill rate, time efficiency, and energy consumption. Moreover,
it is evident that the automated scooping triggering phase outperforms
manual operations.
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7.5. Large-scale, long-term production

As shown in Table 6, the proposed algorithm combines both strate-
gies and has been stably operational for 8 weeks at Mixing Station B
and 5 weeks at Mixing Station A, executing 1603 and 487 loading tasks,
respectively, all of which successfully completed the shoveling tasks.
Taking Mixing Station B as an example, when scooping gravel, the “Just
in & out” strategy was primarily chosen, accounting for 96.6% of all
gravel data, indicating that this strategy performs well in most cases.
When scooping river sand, the “Stairway” strategy was mainly selected,
with about 79.1% of atomic actions being 1 (“Stairway #1”), having
similar time consumption but higher energy consumption compared to
the “Just in & out” strategy; about 20.9% of atomic actions were 3
(“Stairway #3”), with both time and energy consumption exceeding
the “Just in & out” strategy by more than 20% (The “Stairway #2”
strategy was employed only on 22 tasks, which was not accounted
for in the table). Additionally, 3.4% of gravel were scooped using the
“Stairway” strategy, indicating unexpected situations where the bucket
was not full but the vehicle speed was zero, necessitating intervention
through feedback. Multiple large-scale production experiments have
shown that the proposed algorithm can fully consider the possible sce-
narios in actual production, flexibly select different strategies according
to the situation, and truly balance efficiency, energy consumption, and
robustness. If the fixed number of “Stairway #3” scooping strategies
used in Refs. Cao et al. (2023a,b) is taken as the baseline, the proposed
adaptive scooping strategy, after 2090 long-term tests, has reduced the
time spent in the scooping phase by 22% and energy consumption
by 13%, while maintaining a high bucket fill rate to meet the actual
production requirements of the mixing station. As shown in Table 7,
we re-evaluated the performance of the automated algorithm based on
material type. For sand, the exclusive use of the “Stairway” strategy
resulted in longer scooping time and higher energy consumption. In
the case of gravel, the fallback “Stairway” strategy was occasionally
triggered under special circumstances, such as insufficient forward
speed towards the pile. However, such instances accounted for only
3.9% of all gravel scooping actions, relative to the dominant “Just in
& out” strategy.

A statistical analysis was conducted on the time consumption and
energy consumption of different shoveling strategies in actual produc-
tion. Specifically, the time consumption refers to the duration from
the moment the bucket contacts the material to the completion of the
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Operational data from stable operations over 8 weeks at Mixing Station B and 5 weeks at Mixing Station C, recording material types processed by different

shoveling strategies, average shoveling time, and average energy consumption.

Week Just in & out Stairway #1 Stairway #3

Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ)
0920-0922 59 5.12 208.86 13 1 5.06 241.58 1 1 7.01 289.8
0923-0929 249 4.97 204.59 44 1 5.06 246.98 8 5 7.12 289.04
1007-1013 285 4.89 201.5 86 2 4.86 234.5 12 8 6.47 252.74
1014-1020 115 4.82 199.02 17 0 4.84 236.55 2 1 6.07 204.1
1021-1027 48 4.58 188.23 1 0 4.29 230.33 0 0 - -
1104-1110 96 5.12 205.74 69 0 5.01 226.07 40 7 6.44 241.07
1111-1117 109 5.16 207.4 77 4 5.11 242.87 20 5 6.49 222.67
1118-1122 92 4.91 191.18 98 2 4.81 215.66 24 1 6.25 238.85
Sum/Mean/Mean 1053 4.95 201.86 415 4.95 231.86 135 6.48 243.5
Week Just in & out Stairway #1 Stairway #3

Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ) Sand Gravel Time (s) Energy (kJ)
1014-1020 64 4.71 202.90 30 1 5.09 266.49 0 0 - -
1021-1027 53 4.53 191.94 24 2 4.68 222.24 2 3 5.98 255.64
1104-1110 94 4.88 216.63 30 5 5.56 246.58 0 3 6.64 264.04
1111-1117 21 4.96 232.19 24 0 5.15 263.52 0 2 6.15 286.23
1118-1122 90 4.80 223.84 39 0 5.02 260.30 0 0 - -
Sum/Mean/Mean 322 4.77 212.87 155 5.12 252.55 10 6.21 264.28

Table 7 5 s; for each additional atomic action, the median time consumption in-

»

Shoveling performance by material type. Note that values for “Just in & out
and “Stairway” columns represent occurrence counts.

Material type Just in & out Stairway Time (s) Energy (kJ)
Big gravel 1221 23 4.96 205.74
Small gravel 154 31 5.04 210.86
Sand 0 661 5.38 241.65
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Fig. 22. Boxplot of time and energy consumption for different shoveling
strategies; “Stairway#i” indicates the “Stairway” strategy with atomic action
count i.

scooping motion, while the energy consumption is the total energy used
by the travel motor and hydraulic motor during the shoveling period.
From the boxplot 22(a), it can be observed that the time consumption
of the “Stairway” strategy increases with the number of atomic actions.
When the number of atomic actions is 1, the time consumption is
similar to the “Just in & out” strategy, with a median of approximately
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creases by about 0.7 s, indicating that pauses between multiple atomic
actions consume more time. From the boxplot 22(b), it is evident that
the “Stairway” strategy consumes significantly more energy. When the
number of atomic actions is 1, the median energy consumption is about
25% higher than the “Just in & out” strategy due to the increased
difficulty in scooping the material and higher resistance; as the number
of atomic actions increases, multiple actions are required, leading to
an increasing trend in energy consumption. The experimental results
confirm that the “Just in & out” strategy is superior to the “Stairway”
strategy in terms of both time and energy consumption. However,
due to frequent failures when scooping difficult materials like river
sand, it is reasonable to automatically select between the two scooping
strategies.

Over a period of three days, data were randomly collected from 20
daily material shoveling operations performed by a human operator
using the same XCMG 968EV loader at Mixing Plant B, without prior
notice that their operational data would be recorded. These data were
compared with the proposed automatic shoveling system, as shown
in Fig. 23. The average time for the manual shoveling process was
5.26 s, while the automatic shoveling system’s average time was 5.04 s,
slightly lower than the manual shoveling strategy. Additionally, when
comparing the average energy consumption of both shoveling pro-
cesses, it was found that the automatic shoveling strategy (216.26 kJ)
was 11% lower than the manual shoveling strategy (244.07 kJ). The
proposed autonomous loader shoveling system achieves lower energy
consumption than manual operation due to several key factors. Firstly,
the system can predict the shoveling volume in real-time and trigger the
shoveling action promptly based on the operational conditions, thereby
avoiding energy losses caused by redundant movements. Moreover, the
system ensures seamless transitions between different operations and
selects the most suitable shoveling strategy based on the shoveling
volume, material type, and vehicle speed, guaranteeing the completion
of the shoveling task with minimal energy expenditure. Additionally,
the autonomous loader system can provide accurate and timely outputs
of the vehicle’s acceleration and boom angle information, enabling
precise control of the loader’s power and transmission systems. The
control system still has room for improvement. During the crowding
phase, the system uses a pre-set fixed acceleration for advancement,
which does not allow for real-time selection of the optimal throttle
control based on the actual operating conditions of the vehicle. This
limitation may lead to unnecessary energy consumption. Meanwhile,
a significant variance in manual performance was also observed, with
the minimum time being 4 s and the maximum time being 6 s, and the
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Fig. 23. Randomly collected time (left) and energy consumption (right) of manual daily material shoveling operations, with mean lines exceeding those of the

automatic shoveling method.

Fig. 24. The actual shoveling process and the changes in the semantic elevation map at Mixing Station A and Mixing Station B. (a)-(d) and (e)-(f) respectively
document the entire process of rushing towards and contacting the pile, executing the shoveling action (retracting the bucket, raising the boom), and ultimately

exiting. Please refer to the demonstration video at https://youtu.be/uHHbI35hjsY.

lowest energy consumption at 172.17 kJ and the highest at 310.8 kJ.
Besides the influence of environmental factors such as the material pile,
it is believed that the level of manual shoveling is easily affected by the
urgency of mixing plant operations, the duration of continuous work by
the operator, and subjective factors. In contrast, unmanned operations
demonstrate more stable efficiency and energy consumption levels and
can perform continuous work at high intensity for extended periods,
which is a significant advantage of the automatic shoveling systems.
Two operation contents were randomly presented at Mixing Sta-
tion A and Mixing Station B, with the changes in intermediate work
states and semantic elevation maps being recorded, as shown in Fig.
24. Panels (a)-(d) depict the scene of the L955HE model unmanned
fuel-powered loader at Mixing Station B, where the loading method
based on semantic elevation maps and perception-triggered actions
can handle piles of low-lying materials. Panels (e)—(h) show the scene
of the XCMG 968EV unmanned electric loader at Mixing Station C,
illustrating the loader’s contact with the material pile, execution of
the “Stairway” scooping action, and withdrawal process. The automatic
shoveling system is responsible for computing the vehicle’s travel ac-
celeration and joint angle control signals at the upper layer and then
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transmitting these signals to the lower-level control units. For fuel-
powered and electric loaders, the primary difference in the lower-level
control lies in the control variables: fuel-powered loaders adjust the
throttle to increase travel acceleration, while electric loaders control
torque. However, the control of arm joint angles is uniformly achieved
through the PWM signals of the corresponding hydraulic solenoid
valves. This hierarchical control approach enables the system to be
compatible with both fuel and electric vehicles, ensuring good ver-
satility. It can be observed that the automatic shoveling system can
autonomously select appropriate shoveling points, successfully com-
plete scooping operations under different material types and vehicle
models while maintaining a high bucket fill rate, and simultaneously
update the semantic elevation map in real-time, ensuring real-time
and precise modeling of the surrounding environment to facilitate
subsequent operation processes.

7.6. System adaptation

This section details the adaptation process involved in deploying
our proposed autonomous shoveling system to a new wheel loader
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Fig. 25. Field deployment of the autonomous shoveling system on a new
XCMG XC958EV wheel loader at a mixing station in Shandong, China.

model and a new mixing plant environment, highlighting the system’s
transferability. The initial step involves performing precise calibration
of key dimensional parameters and sensor intrinsic/extrinsic param-
eters using the kinematic calibration method for the arm and the
camera-LiDAR calibration approach introduced in Section 3. These
parameters form the critical foundation for all subsequent modules.
Subsequently, baseline vehicle controllers are tuned, including travel
velocity control, arm joint position control, and trajectory tracking
control. Building upon this foundational layer, adapting the scooping
strategy itself requires calibrating only a few key poses, such as the
arm and joint angles during the attacking phase (where the bucket must
remain grounded) and the target joint angles at the end of the scooping
phase.

Two components may require additional data collection: the seman-
tic segmentation model and the shoveling volume prediction model.
Should significant environmental differences exist (e.g., a new mixing
plant layout), scene-specific data must be collected. The model can
then be efficiently fine-tuned using a combination of automated SAM-
based annotation and limited manual labeling. Similarly, if material
properties differ substantially, the volume prediction model may need
retraining with newly collected scooping data. Importantly, inaccu-
racies in these models rarely lead to critical failures and primarily
affect performance metrics such as bucket fill rate, cycle time, and en-
ergy consumption. The system incorporates several robustness-oriented
design choices: the fusion of semantic and elevation data mitigates
the impact of unstable segmentation, while inaccuracies in volume
prediction can be compensated for by adjusting operational thresholds
(e.g., raising the volume trigger threshold to prioritize bucket fill rate
over efficiency). This allows the system to remain operational while
continuously improving through data collected during deployment.

A case in point is the successful deployment of the system on a new
XCMG XC958EV electric autonomous wheel loader at a mixing station
in Shandong, China (as shown in Fig. 25). The calibration and baseline
controller tuning were completed within one day. During a one-week
trial run, perception and scooping data were collected to refine the
models, after which the system achieved stable and efficient long-term
operation.

8. Limitations and future work

Although our adaptive selection mechanism between the “Just in &
out” and “Stairway” strategies has achieved a balanced performance in
bucket fill rate, efficiency, and energy consumption across two mixing
stations, the current switching logic still relies on relatively simple rule-
based conditions. For instance, the difficulty of scooping is currently
determined primarily based on material type alone. This can lead to
suboptimal decisions, such as misclassifying a challenging gravel pile as
suitable for the “Just in & out” strategy, ultimately resulting in vehicle
stoppage and an emergency switch to the “Stairway” strategy. Our
observations indicate that scooping difficulty is influenced by multiple
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factors, including the vehicle’s entry speed and material compaction
density (Li et al., 2021). In response, we plan to develop a more
sophisticated assessment method that integrates multi-modal state and
perceptual information during the crowding phase to more accurately
evaluate scooping difficulty in real time.

Furthermore, both the “Just in & out” and “Stairway” strategies
operate largely in an open-loop manner across most control cycles, with
fixed parameters such as throttle value and target joint angles. This
rigidity may lead to suboptimal performance given the complex and
dynamic interactions between the bucket and the material. Recent stud-
ies (Eriksson et al., 2024b) have introduced methods based on world
models and reinforcement learning, which adaptively adjust the scoop-
ing strategy using real-time perception of vehicle and environmental
states. These approaches also leverage historical scooping experiences
to learn latent states in a world model, thereby continuously improving
future performance.

In future work, we aim to investigate data-driven methods for
evaluating scooping difficulty and enabling adaptive adjustment of the
scooping strategy. This will include exploring reinforcement learning
frameworks capable of closed-loop control and integrating predictive
models to enhance overall autonomy and robustness.

9. Conclusions

This paper presents a novel automatic shoveling system that ensures
the safety of the loader and its environment while balancing robust-
ness, efficiency, and energy consumption. Such a system can promote
technological advancement and intelligent development in the con-
struction machinery industry. Initially, the system achieves automatic
calibration of cameras and LiDAR, effectively solving the issue of long-
term calibration stability caused by severe vibrations in construction
machinery operation scenarios. Secondly, by employing multi-frame,
multi-sensor confidence fusion technology for pile surface perception,
the system can achieve real-time and accurate segmentation of the pile
surface even under environmental light interference and uneven pile
surface shapes. Subsequently, a more comprehensive and integrated
evaluation index for shoveling point selection is formulated based on
the pile elevation map, which fully weighs the safety of the loader,
environmental safety, and operational efficiency. Then, by predicting
the shoveling volume and calculating the current shoveling volumes,
the system enables the timely and accurate triggering of shoveling
actions with hydraulic delay characteristics, ensuring accurate control
of the shoveling volume and high efficiency of the shoveling opera-
tion. Finally, the loader can autonomously select the optimal scooping
action between open-loop prediction and closed-loop feedback based
on the actual conditions during production operations. The system
has undergone two months of field production in three mixing sta-
tions, demonstrating stable and outstanding performance throughout
the tasks, ensuring high efficiency and low cost of shoveling operations
(achieving an average efficiency level comparable to manual operation
while reducing energy consumption by 11%).

CRediT authorship contribution statement

Guangda Chen: Writing — review & editing, Writing — original draft,
Visualization, Validation, Supervision, Software, Resources, Project ad-
ministration, Methodology, Investigation, Formal analysis, Data cu-
ration, Conceptualization. Zhiwen Zhang: Writing — original draft,
Visualization, Software, Methodology, Investigation, Data curation. Lin
Cheng: Writing — review & editing, Writing — original draft, Method-
ology,S5 PDF Investigation, Conceptualization. Cheng Jin: Writing —
original draft, Software, Methodology, Data curation. Shunyi Yao:
Writing — original draft, Software, Methodology. Yue Wang: Writing
- review & editing, Supervision. Rong Xiong: Writing — review & edit-
ing, Supervision. Yingfeng Chen: Supervision, Project administration,
Funding acquisition.



G. Chen et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to express their gratitude to Qi Sheng for
his support in software development, which has ensured the long-
term stability of the system. They also appreciate the daily operational
support and data collection efforts provided by Guohang Niu in bring-
ing the work into the actual production environment. Additionally,
they appreciate the dedication of Yingqing Liao and Xinwei Yang in
advancing the commercialization of the project product. Lastly, they
would like to thank Changjie Fan for his support in providing project
resources.

Data availability

Data will be made available on request.

References

Agarwal, S., Mierle, K., Team, T.C.S., 2023. Ceres solver. URL: https://github.com/
ceres-solver/ceres-solver.

Agrawal, T.K., Hanson, R., Sultan, F.A., Johansson, M.I., Andersson, D., Stefansson, G.,
Katsela, K., Browne, M., 2023. Automating loading and unloading for autonomous
transport: Identifying challenges and requirements with a systems approach. In:
Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (Eds.),
Advances in Production Management Systems. Production Management Systems
for Responsible Manufacturing, Service, and Logistics Futures. Springer Nature
Switzerland, Cham, pp. 332-345.

Almgvist, H., 2009. Automatic bucket fill.

Aoshima, K., Falldin, A., Wadbro, E., Servin, M., 2023. World modeling for
autonomous wheel loaders. Automation URL: https://api.semanticscholar.org/
CorpusID:262084021.

Cao, B., Liu, X., Chen, W., Li, H., Wang, X., 2023a. Intelligentization of wheel loader
shoveling system based on multi-source data acquisition. Autom. Constr. 147,
104733.

Cao, B.-w., Liu, C.-y., Chen, W., Tan, P., Yang, J.-w., 2023b. Shovel-loading cooperative
control of loader under typical working conditions. ISA Trans. 142, 702-715.
Cardenas, D., Loncomilla, P., Inostroza, F., Parra-Tsunekawa, 1., Ruiz-del Solar, J., 2023.
Autonomous detection and loading of ore piles with load—haul-dump machines in

room & pillar mines. J. Field Robot. 40 (6), 1424-1443.

Chen, G., Dong, W., Yao, Z., Bi, Q., Li, X., 2025. Estimating bucket fill factor for loaders
using point cloud hole repairing. Autom. Constr. 170, 105886.

Chen, Y., Jiang, H., Shi, G., Zheng, T., 2022b. Research on the trajectory and opera-
tional performance of wheel loader automatic shoveling. Appl. Sci. 12 (24), http://
dx.doi.org/10.3390/app122412919, URL: https://www.mdpi.com/2076-3417/12/
24/12919.

Chen, J., Lu, W., Yuan, L., Wu, Y., Xue, F., 2022a. Estimating construction waste truck
payload volume using monocular vision. Resour. Conserv. Recycl. 177, 106013.

Chen, Y., Shi, G., Tan, C., Wang, Z., 2023. Machine learning-based shoveling trajectory
optimization of wheel loader for fuel consumption reduction. Appl. Sci. 13
(13), http://dx.doi.org/10.3390/app13137659, URL: https://www.mdpi.com/2076-
3417/13/13/7659.

Chen, G., Wang, Y., Li, X., Bi, Q., Li, X., 2024. Shovel point optimization for unmanned
loader based on pile reconstruction. Comput. Aided Civ. Infrastruct. Eng..

Dadhich, S., Bodin, U., Andersson, U., 2016. Key challenges in automation of
earth-moving machines. Autom. Constr. 68, 212-222.

Dadhich, S., Bodin, U., Sandin, F., Andersson, U., 2018. From tele-remote operation
to semi-automated wheel-loader. Int. J. Electr. Electron. Eng. Telecommun. 7 (4),
178-182.

Dadhich, S., Sandin, F., Bodin, U., Andersson, U., Martinsson, T., 2019. Field test of
neural-network based automatic bucket-filling algorithm for wheel-loaders. Autom.
Constr. 97, 1-12. http://dx.doi.org/10.1016/j.autcon.2018.10.013, URL: https://
www.sciencedirect.com/science/article/pii/S0926580518305119.

Eriksson, D., Ghabcheloo, R., Geimer, M., 2024a. Automatic loading of unknown
material with a wheel loader using reinforcement learning. In: 2024 IEEE In-
ternational Conference on Robotics and Automation. ICRA, pp. 3646-3652. http:
//dx.doi.org/10.1109/ICRA57147.2024.10610221.

Eriksson, D., Ghabcheloo, R., Geimer, M., 2024b. Optimizing bucket-filling strategies
for wheel loaders inside a dream environment. Autom. Constr. 168, 105804.

20

Engineering Applications of Artificial Intelligence 167 (2026) 113908

Fernando, H., Marshall, J., 2020. What lies beneath: Material classification for au-
tonomous excavators using proprioceptive force sensing and machine learning.
Autom. Constr. 119, 103374.

Fernando, H.A., Marshall, J.A., Almqvist, H., Larsson, J., 2018. Towards controlling
bucket fill factor in robotic excavation by learning admittance control setpoints. In:
Field and Service Robotics: Results of the 11Th International Conference. Springer,
pp. 35-48.

Filla, R., Ericsson, A., Palmberg, J.-O., 2005. Dynamic simulation of construction
machinery: Towards an operator model. http://dx.doi.org/10.13140/RG.2.1.3915.
5680.

Filla, R., Obermayr, M., Frank, B., 2014. A study to compare trajectory generation
algorithms for automatic bucket filling in wheel loaders. In: 3rd Commercial Vehicle
Technology Symposium. pp. 588-605.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24 (6), 381-395.

Frank, B., Kleinert, J., Filla, R., 2018. Optimal control of wheel loader actuators in
gravel applications. Autom. Constr. 91, 1-14.

Frank, B., Skogh, L., Alakiila, M., 2012. On wheel loader fuel efficiency difference
due to operator behaviour distribution. In: 2nd International Commercial Vehicle
Technology Symposium. CVT, pp. 1-18.

Gu, Y., Wu, J., Liu, C., 2025. Error analysis and accuracy evaluation method
for coordinate measurement in transformed coordinate system. Measurement
242, 115860. http://dx.doi.org/10.1016/j.measurement.2024.115860, URL: https:
//www.sciencedirect.com/science/article/pii/S0263224124017457.

Hemami, A., Hassani, F., 2009. An overview of autonomous loading of bulk material. In:
2009 26th International Symposium on Automation and Robotics in Construction.
ISARC 2009.

Kamari, M., Ham, Y., 2021. Vision-based volumetric measurements via deep learning-
based point cloud segmentation for material management in jobsites. Autom.
Constr. 121, 103430.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.-Y., et al., 2023. Segment anything. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4015-4026.

Koyachi, N., Sarata, S., 2009. Unmanned loading operation by autonomous wheel
loader. In: 2009 ICCAS-SICE. IEEE, pp. 2221-2225.

Lee, J.S., Ham, Y., Park, H., Kim, J., 2022. Challenges, tasks, and opportunities
in teleoperation of excavator toward human-in-the-loop construction automation.
Autom. Constr. 135, 104119. http://dx.doi.org/10.1016/j.autcon.2021.104119.

Li, J., Chen, C., Li, Y., Wu, H., Li, X., 2021. Difficulty assessment of shoveling stacked
materials based on the fusion of neural network and radar chart information.
Autom. Constr. 132, 103966.

Lindmark, D.M., Servin, M., 2018. Computational exploration of robotic rock loading.
Robot. Auton. Syst. 106, 117-129. http://dx.doi.org/10.1016/j.robot.2018.04.010,
URL: https://www.sciencedirect.com/science/article/pii/S0921889017305511.

Liu, J., 2023. Automatic calibration for camera and solid-state LiDAR (livox). https:
//github.com/GAfieldCN/automatic-camera-pointcloud-calibration.

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Jiang, Q., Li, C., Yang, J., Su, H.,
et al.,, 2025. Grounding dino: Marrying dino with grounded pre-training for open-
set object detection. In: European Conference on Computer Vision. Springer, pp.
38-55.

Luo, Z., Yan, G., Cai, X., Shi, B., 2024. Zero-training lidar-camera extrinsic calibration
method using segment anything model. In: 2024 IEEE International Conference on
Robotics and Automation. ICRA, IEEE, pp. 14472-14478.

Magnusson, M., Almqvist, H., 2011. Consistent pile-shape quantification for autonomous
wheel loaders. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, pp. 4078-4083.

Miki, T., Wellhausen, L., Grandia, R., Jenelten, F., Homberger, T., Hutter, M., 2022.
Elevation mapping for locomotion and navigation using gpu. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS, IEEE, pp.
2273-2280.

Nezhadali, V., Frank, B., Eriksson, L., 2016. Wheel loader operation—Optimal control
compared to real drive experience. Control Eng. Pract. 48, 1-9.

Ren, T, Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., Chen, J., Huang, X., Chen, Y., Yan, F.,
et al., 2024. Grounded sam: Assembling open-world models for diverse visual tasks.
arXiv preprint arXiv:2401.14159.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510-4520.

Sarata, S., 2006. Development of autonomous system for loading operation by wheel
loader. pp. 466-471, IS-ARC 2006.

Sarata, S., Kiyachi, N., Sugawara, K., 2008. Measuring and update of shape of pile for
loading operation by wheel loader. In: 25th ISARC.

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D., 2020. Lio-sam: Tightly-
coupled lidar inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS, IEEE, pp.
5135-5142.

Wu, L., 2003. A Study on Automatic Control of Wheel Loaders in Rock/soil Loading.
The University of Arizona.


https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb2
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb3
https://api.semanticscholar.org/CorpusID:262084021
https://api.semanticscholar.org/CorpusID:262084021
https://api.semanticscholar.org/CorpusID:262084021
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb5
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb5
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb5
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb5
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb5
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb6
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb6
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb6
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb7
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb7
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb7
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb7
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb7
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb8
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb8
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb8
http://dx.doi.org/10.3390/app122412919
http://dx.doi.org/10.3390/app122412919
http://dx.doi.org/10.3390/app122412919
https://www.mdpi.com/2076-3417/12/24/12919
https://www.mdpi.com/2076-3417/12/24/12919
https://www.mdpi.com/2076-3417/12/24/12919
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb10
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb10
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb10
http://dx.doi.org/10.3390/app13137659
https://www.mdpi.com/2076-3417/13/13/7659
https://www.mdpi.com/2076-3417/13/13/7659
https://www.mdpi.com/2076-3417/13/13/7659
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb12
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb12
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb12
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb13
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb13
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb13
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb14
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb14
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb14
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb14
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb14
http://dx.doi.org/10.1016/j.autcon.2018.10.013
https://www.sciencedirect.com/science/article/pii/S0926580518305119
https://www.sciencedirect.com/science/article/pii/S0926580518305119
https://www.sciencedirect.com/science/article/pii/S0926580518305119
http://dx.doi.org/10.1109/ICRA57147.2024.10610221
http://dx.doi.org/10.1109/ICRA57147.2024.10610221
http://dx.doi.org/10.1109/ICRA57147.2024.10610221
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb17
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb17
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb17
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb18
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb18
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb18
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb18
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb18
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb19
http://dx.doi.org/10.13140/RG.2.1.3915.5680
http://dx.doi.org/10.13140/RG.2.1.3915.5680
http://dx.doi.org/10.13140/RG.2.1.3915.5680
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb21
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb21
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb21
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb21
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb21
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb22
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb22
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb22
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb22
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb22
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb23
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb23
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb23
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb24
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb24
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb24
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb24
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb24
http://dx.doi.org/10.1016/j.measurement.2024.115860
https://www.sciencedirect.com/science/article/pii/S0263224124017457
https://www.sciencedirect.com/science/article/pii/S0263224124017457
https://www.sciencedirect.com/science/article/pii/S0263224124017457
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb26
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb26
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb26
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb26
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb26
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb27
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb27
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb27
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb27
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb27
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb28
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb28
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb28
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb28
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb28
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb29
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb29
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb29
http://dx.doi.org/10.1016/j.autcon.2021.104119
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb31
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb31
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb31
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb31
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb31
http://dx.doi.org/10.1016/j.robot.2018.04.010
https://www.sciencedirect.com/science/article/pii/S0921889017305511
https://github.com/GAfieldCN/automatic-camera-pointcloud-calibration
https://github.com/GAfieldCN/automatic-camera-pointcloud-calibration
https://github.com/GAfieldCN/automatic-camera-pointcloud-calibration
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb34
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb35
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb35
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb35
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb35
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb35
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb36
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb36
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb36
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb36
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb36
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb37
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb38
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb38
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb38
http://arxiv.org/abs/2401.14159
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb40
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb40
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb40
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb40
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb40
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb41
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb41
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb41
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb42
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb42
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb42
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb43
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb44
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb44
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb44

G. Chen et al.

Xu, Z., Lu, X., Xu, E., Xia, L., 2022. A sliding system based on single-pulse scanner and
rangefinder for pile inventory. IEEE Geosci. Remote. Sens. Lett. 19, 1-5.

Xu, Z., Peng, Y., Lin, J., Yang, K., Peng, S., 2024. An improved sliding system based on
multi-pulse scanner and rangefinder for pile inventory. IEEE Trans. Instrum. Meas..

Yang, C., 2025. Interval riccati equation-based and non-probabilistic dynamic
reliability-constrained multi-objective optimal vibration control with multi-source
uncertainties. J. Sound Vib. 595, 118742.

Yang, C., Liu, Y., Gao, H., 2025a. Reliability-constrained uncertain spacecraft sliding
mode attitude tracking control with interval parameters. IEEE Trans. Aerosp.
Electron. Syst..

Yang, C., Zuo, Y., Lu, W., Wang, T., 2025b. Uncertain attitude tracking control for
QUAV based on interval LQT with states reliability constraints. Nonlinear Dynam.
1-21.

21

Engineering Applications of Artificial Intelligence 167 (2026) 113908

Yao, J., Edson, C.P., Yu, S., Zhao, G., Sun, Z., Song, X., Stelson, K.A., 2023. Bucket
loading trajectory optimization for the automated wheel loader. IEEE Trans. Veh.
Technol. 72 (6), 6948-6958.

You, K., Zhou, C., Ding, L., Chen, W., Zhang, R., Xu, J., Wu, Z., Huang, C., 2023.
Earthwork digital twin for teleoperation of an automated bulldozer in edge
dumping. J. Field Robot. 40 (8), 1945-1963.

Zauner, M., Altenberger, F., Knapp, H., Kozek, M., 2020. Phase independent finding
and classification of wheel-loader work-cycles. Autom. Constr. 109, 102962.

Zhang, W., Huang, Z., Luo, G., Chen, T., Wang, X., Liu, W., Yu, G., Shen, C,
2022. Topformer: Token pyramid transformer for mobile semantic segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12083-12093.

Zhang, L., Zhao, J., Long, P., Wang, L., Qian, L., Lu, F., Song, X., Manocha, D.,
2021. An autonomous excavator system for material loading tasks. Sci. Robot.
6 (55), eabc3164. http://dx.doi.org/10.1126/scirobotics.abc3164, arXiv:https://
www.science.org/doi/pdf/10.1126/scirobotics.abc3164. URL: https://www.science.
org/doi/abs/10.1126/scirobotics.abc3164.


http://refhub.elsevier.com/S0952-1976(26)00189-2/sb45
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb45
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb45
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb46
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb46
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb46
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb47
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb47
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb47
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb47
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb47
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb48
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb48
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb48
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb48
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb48
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb49
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb49
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb49
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb49
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb49
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb50
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb50
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb50
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb50
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb50
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb51
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb51
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb51
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb51
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb51
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb52
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb52
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb52
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://refhub.elsevier.com/S0952-1976(26)00189-2/sb53
http://dx.doi.org/10.1126/scirobotics.abc3164
https://www.science.org/doi/pdf/10.1126/scirobotics.abc3164
https://www.science.org/doi/pdf/10.1126/scirobotics.abc3164
https://www.science.org/doi/pdf/10.1126/scirobotics.abc3164
https://www.science.org/doi/abs/10.1126/scirobotics.abc3164
https://www.science.org/doi/abs/10.1126/scirobotics.abc3164
https://www.science.org/doi/abs/10.1126/scirobotics.abc3164

	Efficient and robust shoveling control system based on semantic elevation mapping for unmanned loaders
	Introduction
	System Overview
	Sensor configuration and calibration
	Kinematic Calibration of the Arm
	Calibration of the Perception Module

	Pile Perception
	Material Surface Mapping
	Semantic Segmentation
	Semantics–Elevation Fusion

	Shoveling Point Selection
	Torque Balance Score st
	Safety Distance Score ss
	Concavity Score  sc 
	Efficiency Score  se 
	Entry Angle Score  sa 

	Shoveling Control Strategy
	Shoveling Volume Estimation
	Scooping Operations

	Experiments and Results
	Calibration Results
	Material surface perception results
	Semantic segmentation
	Perception fusion

	Shoveling Points Selection
	Shoveling Control Strategy
	Shoveling Volume Estimation
	Shoveling Control Comparison

	Large-Scale, Long-Term Production
	System Adaptation

	Limitations and Future Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


